
Enhancing Diversity for Data-free Quantization

Supplementary Material

6. Comparison to existing works

Previous works [5, 6, 24, 46] utilize data augmentation. Here
we compare the differences of our method with previous
works. IntraQ [46] uses local reinforcement to conduct crop
or resize to augment the generated images. MixMix [24] em-
ploys the most basic Mixup strategy, blending two generated
samples as input and using the interpolated labels as target
labels. Qimera [6] propose to Mixup the class embeddings,
then generate images containing more classes and use the
interpolated labels as target labels. As such randomly mixed
unrelated images will result in inaccurate interpolated la-
bels, which will confuse the full-precision model, TexQ [5]
proposes to only Mixup generated images, without using
interpolated labels.

Instead of using inaccurate label y =
∑

ωiyi with ran-
dom weights ωi which Mixup unrelated images as exist-
ing works do [5, 6, 24], we devise a multi-layer features
mixer where our weights εi of the target label is the atten-
tion scores which Mixup label embeddings and learn O

0

to capture relations among classes and enhance inter-class
diversity. Besides, our class embeddings are extracted from
multiple layers of the full-precision model, and we devise
normalization flow based attention to focus on features of
different levels and enhance intra-class diversity for gener-
ating data. We also observe the activation feature values in
the activation layers collapse to a sharp peak and exhibit
a long-tail distribution under the mode collapse problem,
which is bad for quantizing the activation layers. Thus, we
propose SimLoss1 to help generate images exhibiting more
diverse features to decentralize this distribution. Then, we
use learnable parameters on the clip ranges in the quantized
model, and propose SimLoss2 to adaptively align the distri-
bution of activation values between the quantized model and
the full-precision model, for the quantized model adaptive
to our generated diverse data.

On the other hand, HAST [23] proposed to generate im-
ages with larger losses, which are the hard samples that the
full-precision model finds hard to classify correctly. This
differs from our motivation, which emphasizes the diversity
of images. Our method significantly outperforms HAST
under the same benchmarks and settings. Genie [17] uses a
quantization framework different from our method and our
baselines, which will make the comparison unfair; thus, we
did not compare Genie following our baselines. Specifically,
all the methods in our paper use a fixed scale factor s, but
Genie uses LSQ [10] to adjust s. Using LSQ will further
improve the performance.

7. Experimental details

In this paper, all the quantization algorithms employ symmet-
ric per-layer quantization which follows previous works [5,
6, 32, 33, 41, 47]. For a given weight parameter Wω and
quantization bit k, the quantization weight Wq is calculated
as follows:

s =
u→ l

2k → 1
, z =

l

s
+ 2k→1

,

wq = clip(round(
wω

s
→ z),→2k→1

, 2k→1
→ 1),

(14)

where u, l denote the maximum and minimum values of
the weights respectively. Transformer architectures do not
have BN layers and we did not use the batch normalization
layers statistics (BNS) loss for ViT models. We followed
the CNN-target quantization methods and used the BNS loss
when quantizing CNN models.

Following previous works [5, 6], the max calibrating train-
ing epoch is 400 using an early stop strategy with the valida-
tion datasets, and the warm-up epoch for the generator is set
to 50 for ImageNet and to 20 for CIFAR-100. We evenly di-
vide the full-precision model into J layers without changing
its original network structure as shown in Figure 3 and J is
tuned from 2, 3 and 4. The training epoch of our classifier
MLP

j is set to one-fifth of the warm-up epoch. After train-
ing our classifiers, we use the weights of all MLP

j to obtain
the label embeddings. The attention heads are tuned from
2, 4 and 6, and the dimensions are tuned from 64, 128 and
256. The number of Transformer blocks in Eq.(8) is tuned
from 2 and 4. All the experiments are conducted with Py-
Torch 1.2.0 and V100 GPU. For all baselines, we report the
experimental results from their corresponding papers. For
the rest quantization bit settings not covered in the original
papers, we conduct experiments using their officially open
codes and carefully tune the hyper-parameters based on the
recommendations from the original papers.
• GDFQ https://github.com/xushoukai/GDFQ
• AIT https://github.com/iamkanghyunchoi/ait
• PSAQ-ViT https://github.com/zkkli/PSAQ-ViT
• ARC https://github.com/iamkanghyunchoi/ait/tree/main
• Qimera https://github.com/iamkanghyunchoi/qimera
• AdaSG https://github.com/hfutqian/AdaSG
• AdaDFQ https://github.com/hfutqian/AdaDFQ

Our code can be found at anonymous repo.

8. Time complexity analysis

Multi-layer Features: The main extra time complexity in
our paper is the attention mechanism which has the com-

https://github.com/iamkanghyunchoi/ait
https://github.com/zkkli/PSAQ-ViT
https://github.com/iamkanghyunchoi/ait/tree/main/AutoReCon_AIT
https://github.com/iamkanghyunchoi/qimera
https://github.com/hfutqian/AdaSG
https://github.com/hfutqian/AdaDFQ
https://anonymous.4open.science/r/DFQ-84E6


To
p-

1 
Ac

cu
ra

cy
(%

)

67.30

67.53

67.75

67.98

68.20

0 2 4 6

67.95

68.13
68.05

67.35

To
p-

1 
Ac

cu
ra

cy
(%

)

67.10

67.38

67.65

67.93

68.20

0 1 2 3 4 5

67.21

67.84

68.13

67.56
67.42

To
p-

1 
Ac

cu
ra

cy
(%

)

67.30

67.53

67.75

67.98

68.20

0 2 4 5 8

67.57

67.93

68.13
68.03

67.44

Number of Heads Number of Layers Number of Transformer Blocks

Figure 8. Parameter sensitivity.

plexity of O(c2D) where c, D denote the number of Mixup
classes and embedding dimension, respectively.
Loss function: For Sim_loss1, the total complexity is
O(nD) for cosine operation where n and D denotes the
number of generated samples in a training iteration and
feature dimension in the full-precision, respectively. For
Sim_loss2, the complexity is O(JD) where J denotes the
number of activation layers.
Backbone: We use the same backbone for the gener-
ator following all baselines, which consists of stacking
Conv2D layers. The complexity of each Conv2D layer is
O(C2

K
2
HW ), where C, K, H , W denotes the channel

size, kernel size, the height and the width of the feature map,
respectively.
Time complexity: The order of magnitude of complexity for
the loss function is much smaller than the backbone, so it can
safely be negligible. The time complexity of the attention
mechanism is O(c2D) where c

2
↑ HW and D ↓ C

2
K

2

for the experiments on Cifar-100 and ImageNet. Therefore,
our extra complexity O(c2D) can safely be negligible as
the complexity of generator O(C2

K
2
HW ) is the main time

complexity. Thus, our overall complexity has the same order
as the baselines.

9. Parameter sensitivity

We evaluate the hyperparameters, i.e. J the total number of
layers of the full-precision model where we extract multi-
layer features to obtain class embeddings, the number of
Transformer blocks in Eq.(8), and the number of heads for
attention in Eq.(6) and Transformer in Eq.(8). The hyperpa-
rameters setting to 0 denotes that we do not extract multi-
layer features to obtain class embeddings or we do not use
attention or Transformer blocks. The experimental results
are shown in Figure 8 for ResNet-18 under the 4w4a setting.
We can observe that: (1) If we increase the number of heads
or the number of Transformer blocks up to 4, it will improve
the performance as the generator could learn the relations
among different classes and minutia features of different lev-
els better. However, too many heads or Transformer blocks

Table 5. Results on ResNet-50

GDFQ Qimera
bit original +plugin original +plugin

3w3a 0.31 17.23 (+16.92) 1.82 20.81 (+18.99)

4w4a 52.12 68.08 (+15.96) 66.25 68.22 (+1.97)

could result in more complex models. Since we lack the
original training data, optimizing complex models becomes
very challenging and thus we get worse performance. (2)
Using more layers from the full-precision model up to 3
could help extract minutia features of more levels, thus en-
hancing the diversity of generated data and improving the
final quantization performance. However, too many layers
from the full-precision model will result in more complexity
in Eq.(8) when focusing on minutia features of all J levels,
and then we will get worse performance.

10. Loss functions as plugin

Our loss functions help to generate diverse data with more
complex feature patterns from the perspective of activated
feature values and learn appropriate clip ranges adaptive to
the generated diverse data in the activation layers. As our
loss functions are model-agnostic, they can be integrated
into existing data-free quantization methods. We use our
loss functions as a plugin to existing methods to assess the
effectiveness. We report the results in Table 5 for baselines
GDFQ, which does not utilize augmentation, and Qimera,
which utilizes latent representation to augment. We can
see that our loss functions further improve the quantization
performance by making the generator generate diverse data
with more complex feature patterns from the perspective of
activated feature values. The improvements are much more
significant for the method where the mode collapse problem
is more serious [6, 41].


	Introduction
	Related Works
	Generative adversarial net
	Quantization
	Data augmentation

	Methodology
	Preliminary
	Overall architecture
	Multi-layer features
	Label embeddings
	Multi-layer features mixer
	Normalization flow based attention

	The loss function

	Experiments
	Experiments setup
	Overall comparison
	Ablation study
	Case study
	More analysis

	Conclusion
	Comparison to existing works
	Experimental details
	Time complexity analysis
	Parameter sensitivity
	Loss functions as plugin

