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A. Detailed Derivation

To simplify the expectation of the loss function in Eq.11,
we perform a second-order Taylor expansion of the loss
function L(θ) around the current weight estimate θ = θ̂.

L(θ) ≈ L(θ̂)+(θ−θ̂)⊤∇θL(θ̂)+
1

2
(θ−θ̂)⊤∇2

θL(θ̂)(θ−θ̂),

(1)
where ∇θL(θ̂) is the First-order derivative of the loss with
respect to the weights. ∇2

θL(θ̂) is the Second-order deriva-
tive of the loss (Hessian matrix). Assuming that θ̂ is a local
optimum where ∇wL(ŵ) = 0, the first-order term vanishes.
Thus, the Taylor expansion simplifies to:

L(θ) ≈ L(θ̂) + 1

2
(θ − θ̂)⊤∇2

θL(θ̂)(θ − θ̂). (2)

Taking the expectation over the weight distribution q(θ):

Ew∼q(θ) [L(θ)] ≈ L(θ̂) + 1

2
Tr
(
∇2

θL(θ̂)Λ−1
)
, (3)

using the formula Eθ∼q(θ)

[
(θ − θ̂)⊤A(θ − θ̂)

]
=

Tr(AΛ−1). According to the definition of FIM and its con-
nection with the Hessian matrix, the FIM can be approxi-
mated by the Hessian matrix near θ̂: ∇2

θL(θ̂) ≈ Fθ. Thus,

Eθ∼q(θ) [L(θ)] ≈ L(θ̂) + 1

2
Tr
(
FθΛ

−1
)
. (4)

The KL divergence between two Gaussian distributions
is given by:

KL(q(θ)∥p(θ)) = 1

2

(
Tr(τ−1

p τq) + (θ̂ − θpt)
⊤τ−1

p (θ̂ − θpt)

− k + ln
det τp
det τq

)
.

(5)
where τq = Λ−1, τp = τ2I , k is the dimensionality of

the parameters. After simplification:

KL(q(θ)∥p(θ)) = 1

2

(
τ−2 Tr(Λ−1) + τ−2∥θ̂ − θpt∥2

− k + k ln τ2 + ln detΛ
)
.

(6)
Substituting the results back into the total loss function:

L(θ̂,Λ−1) =L(θ̂) + 1

2
Tr
(
FθΛ

−1
)
+ γ

(
1

2
τ−2 Tr(Λ−1)

+
1

2
τ−2∥θ̂ − θpt∥2 +

1

2
ln detΛ

)
+ const.

(7)
Taking the derivative of the loss function with respect to Λ:

∂L

∂Λ
= −1

2
Λ−1FθΛ

−1 − γ

2
τ−2Λ−1Λ−1 +

γ

2
Λ−1. (8)

using the matrix derivative formulas, ∂
∂X Tr(AX−1) =

−X−1AX−1, and ∂
∂X ln detX = X−1. Setting ∂L

∂Λ = 0:

−
(
1

2
Λ−1FθΛ

−1 +
γ

2
τ−2Λ−1Λ−1

)
+

γ

2
Λ−1 = 0. (9)

Multiplying both sides by 2Λ:

−
(
Λ−1Fθ + γτ−2Λ−1

)
+ γI = 0, (10)

which simplifies to:

γI = Λ−1
(
Fθ + γτ−2I

)
. (11)

Multiplying both sides by Λ:

γΛ = Fθ + γτ−2I. (12)

We can thus estimate the Fisher Information Matrix Fθ:

Fθ = γΛ− γτ−2I, (13)
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Figure 1. Structural differences between Rein [9] and our method.

As DR-FIM is calculated as,

DRFθ = Fθ(x, y)+e−(ϵµ+ϵσ)
|Fθ(x, y)− Fθ(x

′, y)|
min(Fθi(x),Fθi(x

′)) + ϵ
.

(14)
After combining Eq. 13 with Eq. 14,

DRFθ = γ

(
Λx − τ−2I + e−(ϵµ+ϵσ)

|Λx − Λx′ |
min(Λx,Λx′) + ϵ

γ

)
.,

(15)
This shows that the DR-FIM DRFθ can be estimated from
the covariance matrix Λ−1, with γ and τ2 as hyperparame-
ters.

B. Datasets and Setup.
Datasets GTA5 [5]: Derived from the Grand Theft Auto

V video game, this dataset provides 24,966 synthetic ur-
ban images with pixel-level annotations for 19 categories.
The images, at a resolution of 1914x1052 pixels, simu-
late diverse urban driving scenarios. Cityscapes [2]: This
dataset contains 5,000 finely annotated real-world urban im-
ages from 50 German cities, with a resolution of 2048x1024
pixels. It includes pixel-level annotations for 19 categories.
ACDC [8]: A real-world dataset designed for adverse vi-
sual conditions (fog, nighttime, rain, snow), featuring di-
verse weather scenes with a resolution of 1280x720 pixels.
It is crucial for evaluating models under challenging con-
ditions. BDD100K [10]: A large-scale dataset comprising
8,000 training images and 1,000 validation images, each at
1280x720 pixels. Covering various weather and lighting
scenarios, it is widely used for domain generalization and
segmentation tasks. Foggy Zurich [6]: Contains 1,552 un-
labeled light and medium fog images and 40 labeled foggy
scenes for evaluation. Foggy Driving [6]: Comprises 33
finely-annotated and 68 coarsely-annotated images under
foggy conditions. Dark Zurich [7]: Includes 8,779 images
from daytime, twilight, and nighttime conditions, with 50
annotated images for nighttime validation. Nighttime Driv-
ing [3]: Features 50 annotated nighttime driving images,
serving as a benchmark for nighttime segmentation tasks.

Setup Following Rein [9], we integrated Mask2Former
[1] with various Vision Foundation Models (VFMs) as
backbones. Unlike Rein, we adopted the original decoding

mechanism of Mask2Former, with slight differences from
the modified version in Rein, as detailed in Fig. 1. For
training, we used the AdamW optimizer [4] with a back-
bone learning rate of 1 × 10−5 and a decoder learning
rate of 1 × 10−4, consistent with the suggested configura-
tion in Rein. We conducted 40,000 iterations with a batch
size of 4, where input images were cropped to a resolu-
tion of 512 × 512. The training process was divided into
three stages: a warm-up phase lasting T1 = 10,000 itera-
tions to adapt the decoder, the DR-FIM estimation phase
over T2 = 2,000 iterations, and a fine-tuning phase span-
ning T3 = 28,000 iterations. Regularization and variance
coefficients, γ and τ , were set to 0.01 and 0.01, respec-
tively. ϵµ and ϵσ are randomly sampled from a Gaussian
distribution ∼ N (0, 1). The dynamic parameter selection
strategy began with fine-tuning the top 1% (δmin) of pa-
rameters ranked by DR-FIM and expanded progressively to
15% (δmax) throughout the training process.

C. The Ratio of Fine-tuned Parameters.
The impact of fine-tuning parameter proportions on per-

formance for DINOV2 and SAM VFMs is illustrated in
Fig. 2. We controlled δmax to vary from 0.01 (approx-
imately 3M parameters) to 0.1 (approximately 30M pa-
rameters). The experiment reveals the following key find-
ings: (1). When fine-tuning a small number of parameters
(around 3M), our method performs better than the Freeze
approach but falls short compared to Rein. (2). As the
number of fine-tuned parameters increases to approximately
15M, our method shows a significant improvement in per-
formance, surpassing Rein. (3). Further increasing the fine-
tuned parameters to approximately 30M results in no sub-
stantial performance gains, with the performance tending to
stabilize. We attribute these results to the following anal-
ysis: Rein improves task adaptability by introducing addi-
tional structures to the model, while our method does not
add any extra structures. Consequently, our approach re-
quires fine-tuning more VFM parameters to effectively ac-
tivate the task-specific adaptability of the model.

D. Segmentation Result Visualization.
As shown in Fig.4-Fig.6, our method achieves better seg-

mentation structure and semantic prediction than Rein un-
der various severe weather and extreme conditions.

E. Influence of Hyper-parameters.
Coefficient γ and τ in Eq.(15). The regularization coef-
ficient γ and variance coefficient τ are the most influen-
tial parameters in our method, as they jointly determine the
adjustment of the expected parameter distribution and di-
rectly influence the prediction of the DR-FIM. We explore
the combined impact of these parameters on performance,



Figure 2. Impact of fine-tuning parameter proportions on perfor-
mance for DINOV2 and SAM VFMs, reported as the average met-
ric across GTAV → Cityscapes, BDD100K, and Mapillary tasks.

reporting the average mIoU across GTAV → Cityscapes,
→ BDD100K, and → Mapillary using DINOv2, as shown
in Fig. 3. Overall, the results indicate that the impact
of both parameters remains within an acceptable range
when γ and τ are set between 0.005 and 0.02. Specifi-
cally: When γ becomes excessively large, the performance
drops significantly, reducing the mIoU score by 1.7%. This
demonstrates that overly enforcing the target distribution to
align with the pre-trained distribution decreases the model’s
adaptability. When τ becomes excessively large, the perfor-
mance also drops significantly, reducing the mIoU score by
1.3%. This indicates that a large expected fluctuation in the
target distribution reduces the model’s generalization abil-
ity.

The above parameter analysis demonstrates that setting γ
and τ within the range of 0.005 to 0.02 ensures acceptable
performance. Furthermore, this highlights the importance
of maintaining a smoothly adjusted posterior parameter dis-
tribution to preserve the effectiveness of our method.
Combination coefficient of Eq.(7). We conducted an ab-
lation study on the coefficient λ in Eq. (7), formulated as
(1 − λ)Fθ + λ∆Fθ. As shown in the table, FisherTune
remains stable within λ ∈ [0.4, 0.7], indicating insensitiv-
ity to this parameter. When λ is too small, domain-sensitive
Fisher information is underutilized, and when λ is too large,
overemphasizing ∆Fθ slightly reduces task relevance.

λ 0 0.1 0.3 0.4 0.5 0.6 0.7 0.9 1
CS → ACDC (EVA02) 69.5 70.1 71.5 72.5 72.9 72.7 72.6 71.7 71.3

CS → ACDC (DINOV2) 71.4 72.8 74.9 76.9 77.5 77.2 77.0 76.6 76.1

Table 1. Impact of Combination coefficient.

Training Strategy We use sequential execution (SE) of
DR-FIM and PEFT, as described in the Step 2 and Step 3 of
Algorithm 1. We further tested different progressive train-
ing strategies (linear, exponential, and cosine annealing) for
parameter scheduling, and found that linear and exponential
approaches perform better. We explored alternating execu-
tion (AE) of DR-FIM and PEFT with 2k, 4k, and 6k itera-
tions after warm-up, but SE outperforms AE, likely due to

Figure 3. Impact of the regularization coefficient γ and variance
coefficient τ on generalization performance.

conflicts between DR-FIM and PEFT.
VFM Task Linear Exp (Ours) Cosine Alter-2K Alter-4K Alter-6K

DINOv2 CS→BDD 67.6 67.7 66.1 65.2 65.4 65.9
DINOv2 CS→ACDC 77.3 77.5 76.2 76.1 76.2 76.8

Table 2. Impact of fine-tuning Strategy.

F. GPU memory.

As shown in Table below, our method is more efficient
than Full Tuning, slightly costlier than Rein, but outper-
forms both in performance, achieving a better balance be-
tween cost and performance.

Method GPU Memory (GB) Training Time (Hours)

DINOv2-L Full Tuning 14.7 11.2
Rein 10.0 9.5

FisherTune (Ours) 12.5 10.3

EVA02-L Full Tuning 15.9 11.8
Rein 12.5 10.0

FisherTune (Ours) 13.5 10.5

Table 3. GPU Memory and Training Time.

G. Limitations.

While our method provides a novel and feasible ap-
proach to estimating domain- and task-sensitive parameters
in VFMs, effectively activating their adaptability for DGSS
tasks while preserving their strong generalization capabil-
ities, it also introduces a more complex training process
and increases the number of optimization parameters. Ad-
dressing these complexities and optimizing the training ef-
ficiency will be the focus of our future efforts.
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Figure 4. Domain generalization segmentation visualization results on GTAV → BDD100K.
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Figure 5. Domain generalization segmentation visualization results on GTAV → Mapillary.
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Figure 6. Domain generalization segmentation visualization results on Cityscapes → ACDC.
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