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Appendix

A. Optimization

The comparison of the proposed optimization problems is
summarized in Tab. 1.

Problem Geometry obs. #line var. matrix

(IncMin) incidence raw 1 ω M6×6

(IncBat) incidence raw ≥ 2 ω (Mi)6×6

(CopMin) coplanarity flow 1 ω N3×3

(CopBat) coplanarity flow ≥ 2 ω (Ni)3×3

Table 1. Comparison of optimization problems. obs: observations;
var: variable; raw: raw events; flow: normal flow; Min: minimal
configuration (a single line); Bat: a batch of lines.

A.1. Remark
Remark 1: In optimization problems (IncBat) (CopBat)

with a batch of line observations, the objectives are summa-
tion of minimal eigenvalues. It is also possible to replace
λmin by a monotonically increasing function with respect to
λmin. Usually, we can use λp

min, where p is an exponent.
Popular selection of p includes 1, 2, and 1/2. The optimal
selection of p is determined by the noise level of observa-
tions. In this work, we simply set p as 1.

Remark 2: Given ground truth ωgt and exact rotation
parametrization, the smallest eigenvalue λmin(Mi(ω)) is
about 10−16. Given ground truth ωgt and approximated
rotation parametrization, λmin(Mi(ω)) is about 10−12 ∼
10−9. Since the smallest eigenvalues of Mi(ω) in our prob-
lems are significantly small, the floating number calculation
causes insufficient accuracy and the termination conditions
of optimization methods are easily triggered. To mitigate
these issues, we multiply matrices {Mi(ω)}i by a factor of
106. This does not have any influence on the optimum of ω,
and it only increases the objective λmin by a certain factor.

Remark 3: If an event has an associated weight, we can
simply multiply the weight by the corresponding row of the
matrix A or B.

B. Egomotion Estimation for Pure Rotation
Cases

Pure rotational motion is often a degenerate case in relative
pose estimation, especially for sparse geometric solvers. In
this section, we will discuss how to deal with it.

Proposition 1. Pure rotation leads to

rank([f ′1, · · · , f ′N ]) = 2 (1)

for unique events {f ′j}Nj=1 of a 3D line. Bearing vectors
{f ′j}Nj=1 lies in a same plane whose normal is e2.

Proof. Since the motion is pure rotation, the origin of any
f ′j is the optical center. Meanwhile, any f ′j intersects with a
3D line. Thus bearing vectors {f ′j}Nj=1 lie on a same plane
spanned by the optical center and the 3D line whose normal
is e2.

When rotation is known, Eq. (1) provides a criterion to
determine whether the motion is pure rotation, i.e., linear
velocity v = 0. We can identify the pure rotation cases and
immediately know the linear velocity v is zero.

Proposition 2. When pure rotation occurs, we have
rank(A) = rank(M) = 4. The null space of A has two
orthogonal basis [e2; 0; 0; 0] and [0; 0; 0; e2].

Proof. According to Proposition 1, bearing vectors {f ′j}Nj=1

lies in a same plane whose normal is e2, so does the vector
set {tjf ′j}Nj=1. Note that [t1f ′1, · · · , tN f ′N ] and [f ′1, · · · , f ′N ]
are the transpose of A:,1:3 and A:,4:6. In summary, both the
left and right three columns of A has a null space basis e2.
So A has two null space basis [e2; 0; 0; 0] and [0; 0; 0; e2].
Since M = A⊺A, M has the same rank as that of A.

In [4], the proposed solver can only deal with cases when
rank(A) ≥ 5. In Proposition 2, we have proved that
rank(A) = 4. Thus it cannot deal with the pure rotation
cases. Our pure rotation identification method provides a
supplement to the solver in [4]. In addition, we can use
A:,1:3 or A:,4:6 to recover e2. For e1 and e3, they span
a plane whose normal is e2, but they cannot be uniquely
determined. So the complete line parameters cannot be re-
covered.

Additionally, we can recover the angular velocity ω for
pure rotation cases within the incidence formulation. Ac-
cording to Proposition 2, the top-left and bottom-right 3×3
minor of M have a rank deficiency. So the angular velocity
ω for pure rotation cases can be optimized by

argmin
ω

M∑
i=1

λmin(M̂i(ω)) (2)

where M̂ is bottom-right 3 × 3 minor of M, i.e., M̂ =
M4:6,4:6.

The proposed coplanarity formulation can recover the
angular velocity ω natively for pure rotation cases.
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C. Experiments

C.1. Simulation
In the simulation tests, we observed that the recovered an-
gular velocities were unsatisfactory when only a single line
(M = 1) was available. To investigate the underlying rea-
sons for this phenomenon, we conducted additional experi-
ments.

The runtime and numerical stability for the minimal con-
figuration (M = 1 and N = 100) are presented in Tab. 2.
While the objective values λmin are quite small, the accu-
racy of all solvers remains inadequate, as evidenced by the
significantly low success rates. This phenomenon can be
intuitively explained. With only one line, it is possible to
orbit around that line while simultaneously adjusting the
translational velocity to compensate for the added rotational
velocity about an axis parallel to the line. This creates a
form of rotation-translation ambiguity. Although this am-
biguity might not be perfect, the constant velocity assump-
tion in our motion model makes approximations in any case.
Thus, it is reasonable to conclude that such ambiguity sig-
nificantly impacts the performance.

To further validate this observation, we visualize the ob-
jective landscapes in Fig. 1. When only a single line is used,
the objective functions lack a clear global minimum. When
two lines are used, the objective functions still have rela-
tively large convergence regions. However, when more than
three lines are included, the objective functions exhibit dis-
tinct global minima.

In the synthetic experiments, the success rates of solvers
do not reach 100% even without noise. There are sev-
eral reasons for this. First, for the approximative rotation
parametrization, an approximation of the objective is im-
plicitly introduced. As a result, even its global minimum
may deviate slightly from the ground truth. This also ex-
plains why we used the results from approximative rotations
as an initialization of the cascade method. Second, the ob-
jectives are non-convex, and the local optimization method
may get trapped in local minima. Third, the objective’s
landscape may be relatively flat near the global minimum,
causing local optimization methods to converge slowly or
fail entirely to converge. This explains why the success rate
varies when different thresholds are used to define success.

C.2. Real-World Experiment
As our solvers are the first capable of estimating both ro-
tational and translational parameters, we evaluated their
applicability on the VECtor dataset [2]. This dataset
includes VGA-resolution event recordings captured by a
Gen3 Prophesee camera, 200 Hz ground truth camera poses
obtained via a MoCap system, and 200 Hz readings from
an XSens MTi-30 AHRS IMU. To improve efficiency, the
events within each time interval are downsampled to 5000.

We use the GC-RANSAC [1] as the robust estimation
framework. An angular reprojection [5, 6] threshold of 0.2◦

is used for inlier selection, applied consistently throughout
both the main iterations and the local refinement stages. The
spherical radius r in neighborhood graph construction is set
as 50. The main iterations stop once there is a 0.99 prob-
ability that at least one outlier-free set has been sampled,
or when the maximum of 1000 iterations is reached. In
the local refinement stage, the maximum number of inner
RANSAC iterations is set to 20.

The results of line cluster extraction are shown in Fig. 2.
Events are accumulated into frames, which has a resolution
of 640 × 480. Line segments are then extracted from the
undistorted frames, and events located within 5 pixels of
these line segments are considered as part of the line clus-
ters.

We have also conducted a comparison with two meth-
ods with known angular velocities [3, 4]. Using the same
dataset and settings described in Table 2 of our paper, we
obtained the comparison results of estimated linear veloci-
ties reported in Tab. 3. We can see that the solvers in [3, 4]
have better results than our proposed full-DoF solvers. This
is reasonable, as the comparison methods leverage IMU
readings to solve the rotational parameters of the motion.

Seq. Name ICCV23 [3] CVPR24 [4] IncBat CopBat
desk 23.5 21.8 23.0 25.1
mountain 18.2 16.4 17.5 18.7
sofa 19.7 18.9 21.1 20.6

Table 3. Experiment results of the comparison methods. We report
the median errors of recovered linear velocities εlin (unit: degree).
This table supplements Table 2 of our paper.

C.3. Discussion

Our method shows promising results, it also has a few lim-
itations. (1) The proposed method is best-suited for scenes
that contain long straight lines. (2) The performance of cer-
tain solvers heavily relies on the quality of the extracted
normal flow. (3) For short time intervals, assuming con-
stant angular and linear velocities is reasonable. However,
during aggressive or non-uniform motions, sudden veloc-
ity changes may violate this assumption. A more appropri-
ate approach would involve using a continuous-time model,
such as a cubic B-spline model [7], to model the ω(t) and
v(t).

There are several potential strategies to reduce the depen-
dence on line and normal flow extraction. First, it is possible
to detect event clusters without identifying line segments,
which makes it easier to eliminate the need for frame ac-
cumulation. When integrating our solver in a hypothesis-
and-test framework (such as RANSAC), we can then verify
whether the events within the same cluster originate from a
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(a) IncMin with 1 line (b) CopMin with 1 line

(c) IncBat with 2 lines (d) CopBat with 2 lines

(e) IncBat with 3 lines (f) CopBat with 3 lines

(g) IncBat with 4 lines (h) CopBat with 4 lines

(i) IncBat with 5 lines (j) CopBat with 5 lines

Figure 1. Landscape of the objective functions λmin. The events for each line is set as N = 100. For better visualization, the pseudocolor
and colormap of the objectives use the logarithmic scale.
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formulation rotation median εang SR1(%) SR2(%) median objective runtime

IncMin
+approx 3.0× 10−1 0.8 9.6 5.6× 10−11 9.6 ms
+exact 2.9× 10−1 2.0 10.2 5.4× 10−11 15.8 ms
+cascad 2.8× 10−1 2.5 11.0 4.0× 10−11 15.8 ms

CopMin
+approx 5.8× 10−1 0.0 0.8 4.3× 10−10 15.7 ms
+exact 5.7× 10−1 0.1 1.3 4.4× 10−10 15.9 ms
+cascad 5.5× 10−1 0.0 0.7 2.2× 10−10 15.8 ms

Table 2. Runtime and numerical stability for noise-free synthetic data. The configuration is M = 1 and N = 100. SR1 and SR2 represent
success rate (SR) with thresholds of 0.01 and 0.05, respectively. IncMin and CopMin represent the incidence formulation and coplanarity
formulation, respectively.

(a) An event frame (b) image. It is used for visualization only.

(c) line segment detection (d) line clusters

Figure 2. Line cluster extraction from the desk-normal sequence in the VECtor dataset. (a) An event frame generated by accumulating
events, where red and blue dots represent events with opposite polarities. (b) The corresponding image. (c) Results of line segment
detection. (d) Line cluster extraction by associating events near the line segments. If an event is within 5 pixels of a line segment, draw a
circle at the event’s position.

line. Second, normal flow can be calculated directly without
accumulating frames. The primary focus of our work lies on
the relative pose solver, which remains independent of the
line/cluster detection and normal flow extraction method.
Our method can ultimately be combined with any front-end
method.
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