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Supplementary Material

A. Appendix

In this supplementary material, we first provide more im-
plementation details in Appendix B about training config-
urations (Appendix B.1) and auxiliary data collection (Ap-
pendix B.2). Then we conduct additional experiments in
Appendix C including an experimental comparison to im-
proved SOTA with DIONOv2 (Appendix C.1), and ex-
tended ablation studies (Appendix C.2) related to �s in
the proposed neighbor-silencing loss and the number of
samples in the auxiliary dataset, and feature visualization
to validate the effectiveness of auxiliary categories (Ap-
pendix C.3), and analysis for long-tail in iNaturalist18 [39]
(Appendix C.4). In Appendix D, we discuss our contribu-
tions (Appendix D.1), limitations (Appendix D.2), and fu-
ture work (Appendix D.3).

B. Implementation Details

B.1. Training

We employ LiVT [44] as our baseline since it achieves the
top performance under the training from scratch paradigm
using ViT [10]. Specifically, when training from scratch,
following LiVT [44], we conduct MAE [13] training on the
downstream dataset because training directly on a long-tail
dataset with randomly initialized parameters makes it dif-
ficult to converge. When using pre-training paradigms of
CLIP and DINOv2, we directly initialize ViT from their
weights. Furthermore, the models are trained with AdamW
optimizer [24] with �s = {0.9, 0.95}, with an effective
batch size of 512 on 4 NVIDIA 3090 GPUs. The values
for weight decay and layer decay are 0.05 and 0.75, re-
spectively. We train all models with RandAug(9, 0.5) [5],
Mixup(0.8) [47] and Cutmix(1.0) [46]. Following
LiVT [44], the number of training epochs for ImageNet-
LT, iNaturalist 18, and Place-LT is set to 100, 100, and 30,
respectively. The number of epochs for warmup is set to 10,
10, and 5. The learning rate is set to 1e-3, 1e-5, and 3.5e-5
for training from scratch, CLIP, and DINOv2, respectively.
We set a cosine learning rate schedule and the minimum
learning rate is 1e-6. We set the maximum sampling num-
ber for each auxiliary category to 50 in each training epoch.
The hyper-parameter �s is set to 0.1. For the ratio of neigh-
bor category for head, medium, and tail classes, we set to
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, where Nh, Nm, and Nt denote the in-

stance number of head, medium, and tail classes, respec-
tively. [·] stands for ceiling, which rounds a number up to
the nearest integer.

B.2. Data Collection
We leverage GPT-3.5/4 [28] to search names of
visually similar categories for the downstream
long-tail datasets. We design a structural prompt
with in-context learning and the below shows
one example of our interaction with GPT-4 [28].

Prompt: Now I will give you one category name. Please
create a list which contains 10 visually similar categories
of the provided category.
For example: If I give you a category name: Acacia
cochliacantha. You should return: [Acacia cambagei,
Acacia calamifolia, Acacia campylacantha, Acacia car-
diophylla, Acacia colei, Acacia colletioides, Acacia com-
pacta, Acacia corymbosa, Acacia crocophylla, Acacia
cuthbertii]
Now, I give you this category name: Abaeis Nicippe.
You should return:
Response: [Eurema ada, Eurema alitha, Eurema ander-
sonii, Eurema beatrix, Eurema blanda, Eurema brigitta,
Eurema candida, Eurema celebensis, Eurema desjardinsii,
Eurema esakii]

Tab. 7 shows examples of searched category names for
each query class on three benchmark datasets. The re-
sults show that LLM can provide satisfactory responses
using our prompts. After removing duplicates, we obtain
8913, 2318, and 99192 class names for ImageNet-LT [22],
Place-LT [49], and iNat18 [39] datasets, respectively. Then
we search images for each queried name through the web
(e.g., Google/Duckduckgo Image Search Engine). After re-
moving the dissimilar images, concretely, we collect 4.1M,
1.1M, and 3.6M images in 5012, 1895, and 20380 cate-
gories as auxiliary data. Fig. 7 shows the distribution of
instance numbers for three datasets in each training epoch.
It can be observed that ’Tail’ is extended by auxiliary data
for each dataset.

C. Additional Experiments
C.1. Comparison to Improved SOTA with DINOv2
As shown in Tab. 8, we re-implement LiVT [44] on DI-
NOv2 [26], which is the first work to apply ViT [10]
to long-tail learning and leads the performance under the
training from scratch paradigm. Our implementation dif-
fers only in that LVIT conducts MAE [13] training on the
downstream dataset because training directly on a long-tail
dataset with randomly initialized parameters is difficult to
converge, whereas we initialize directly with the weight



Figure 7. Distribution of samples of original datasets and corresponding datasets with auxiliary data. Please note that because two
lines partially overlap, for a better display, the index of the augmented dataset is slightly shifted.

Table 7. Examples of query classes and respective auxiliary classes across three datasets.

Query Neighbor Categories

ImageNet-LT

Wolf Spider Grass Spider, Fishing Spider, Funnel Web Spider, Garden Spider, Dock Spider, hunts-
man spider

Irish Wolfhound Greyhound, Pharaoh hound, Silken Windhound, Coonhound, Plott Hound, Bearded
Collie

Basketball Handball, Football, Badminton Shuttlecock, Softball, Cricket Ball, Billiard Ball, Bowl-
ing Ball

Kingsnake Milk Snake, Corn Snake, Hognose Snake, Ribbon Snak, Black Racer, Speckled
Kingsnake

iNaturalist 18

Dryopteris Expansa Dryopteris Austriaca, Dryopteris Carthusiana, Dryopteris Dilatata, Dryopteris Filix-
mas

Polypodium Virginianum Polypodium Amorphum, Polypodium Californicum, Polypodium Vulgare, Poly-
podium Scouleri

Adiantum Hispidulum Adiantum Diaphanum, Adiantum Raddianum, Adiantum Reniforme, Adiantum Venus-
tum

Spilosoma Lubricipeda Arctia Caja, Arctia Villica, Callimorpha Dominula, Diaphora Mendica, Eilema De-
pressa

Place-LT

Bus Interior Airplane Interior, Tram Interior, Subway Interior, Van Interior, Taxi Interior, Limo
Interior

Bamboo Forest Tropical forest, Evergreen Forest, Pine Forest, Birch Forest, Cypress Forest, Mangrove
Forest

Fastfood Restaurant Seafood Restaurant, Vegetarian Restaurant, Pizza Restaurant, Mexican Restaurant,
Steakhouse

Physics Laboratory Materials Laboratory, Environmental Laboratory, Geology Laboratory, Engineering
Laboratory

from DINOv2. LiVT leverages the Bal-BCE [44] loss by
default. We also implement Bal-CE [44]) to train LiVT with
DINOv2. Tab. 8 demonstrates that our method shows su-
perior performance on “Medium” and “Few” splits across
three standard benchmarks. For example, our method sur-
passes LiVT(Bal-BCE) 3.2% and 7.6% on “Medium” and
“Few’ in ImageNet-LT. Note that we set LiVT (Bal-CE)
as the baseline method under three pre-training paradigms
(training from scratch, CLIP, and DINOv2).

C.2. Extended Ablation Study

Effect of �s. As shown in Fig. 9c, we study the effect of �s

in the proposed neighbor-silencing loss. The optional val-
ues are {0.01, 0.10, 0.20, 0.30, 0.50, 1.00}. It can be seen
that as �s increases to 0.1, the performance improves. How-

ever, when �s increases to 1.0, the performance drops. This
can be attributed that as �s gradually increases, the pro-
posed neighbor-silencing loss will gradually downgrade to
the standard cross-entropy loss. In this case, the down-
stream dataset and the auxiliary dataset are treated equally
during the training optimization, and the inconsistency be-
tween the network’s optimization objective and the testing
process leads to a decline in performance.

Number of Auxiliary Samples. As shown in Fig. 8b, we
study the effect of the number of samples in the auxiliary
dataset. We find that as the number increases from 0 to 0.9
million, there is a dramatic improvement in the accuracy
in the few and medium categories, and relatively satisfac-
tory performance is achieved, where +3.7% and 2.3% im-
provement in the few and medium categories, respectively.



(a) Ablation study on �s in the proposed neighbor-silencing loss.
(b) Ablation study on the number of samples in the auxiliary
dataset.

Figure 8. More ablation studies. Experiments are conducted on ImageNet-LT [22].

Methods Backbone Overall Many Medium Few

Results on ImageNet-LT with DINOv2 pretraining

LiVT(Bal-BCE) [44] ViT-B 79.4 84.9 78.2 68.5
LiVT(Bal-CE) [44] ViT-B 79.6 84.3 78.3 71.1
Ours ViT-B 81.9 84.4 81.4 76.1

Results on iNat18 with DINOv2 pretraining

LiVT(Bal-BCE) [44] ViT-B 84.5 84.4 85.4 83.3
LiVT(Bal-CE) [44] ViT-B 85.0 85.7 86.2 84.2
Ours ViT-B 87.0 86.4 87.4 86.7

Results on Place-LT with DINOv2 pretraining

LiVT(Bal-BCE) [44] ViT-B 49.6 52.4 49.7 45.2
LiVT(Bal-CE) [44] ViT-B 49.5 49.2 51.3 46.1
Ours ViT-B 50.8 49.4 52.4 49.2

Table 8. Re-implementation of previous method with DINOv2.
We report the performance on three standard benchmark datasets
(i.e., ImageNet-LT, iNaturalist 18, and Place-LT).

From 0.9 million to 4.1 million, the performance gradually
increases. This indicates the data efficiency of our method.

C.3. Feature Visualization

In Fig. 9, we provide more examples to demonstrate the ef-
fectiveness of auxiliary fine-grained categories on the fea-
ture separation for the head and tail classes. We conduct
the experiments on ImageNet-LT [22] and train the mod-
els from random initialization. The left column shows the
feature extracted by the model without auxiliary data, and
the right is with the auxiliary fine-grained categories. The
results show that training with auxiliary fine-grained cat-
egories benefits better feature separation between original
head and tail classes.

C.4. Long-Tail in iNaturalist18
In Sec. 3.2, we validate the effect of granularity on the
performance balance. Except for the granularity, we find
that another difference between iNat18 and ImageNet-LT is
that the number of tail categories in iNat18 is significantly
larger than the number of head categories. To validate the
effect of the proportion of tail categories, we sample 500
classes from the dataset pool, comprising 60 superclasses,
with an imbalance ratio of 0.01. We conduct two sets of ex-
periments: in the first set, we add extra categories to head
classes (each category with more than 100 samples); in the
second set, the extra categories are added to tail (each cate-
gory with less than 20 samples). In both sets, the extra cate-
gories are fine-grained categories related to the original tail
categories. As shown in Fig. 10, the results show that the
long-tail benefits the performance balance, while the long-
tail will exaggerate the imbalanced performance. This also
validates our motivation of extending tail categories with
fine-grained categories to balance the feature learning.

D. Discussions
D.1. Contributions
We summarize and discuss our main contributions as fol-
lows:
1) A new perspective for long-tail learning from neigh-
bor categories. We investigate how to enhance long-tailed
learning from open-set data, which is an understudied prob-
lem. Our pilot study (Sec. 3) highlights the granularity mat-
ters in long-tail learning (Sec. 3.2) and the need for auxil-
iary categories to improve generalization (Sec. 3.3). As
shown in Fig. 2(c), traditional reweighting methods fail to
generalize well. However, based on our finding in Sec. 3.2



(a) Feature visualization of Kit Fox (Head) and Cougar (Tail).

(b) Feature visualization of Crane (Head) and White Stork (Tail).

(c) Feature visualization of Arctic Fox (Head) and Persian Cat (Tail).

(d) Feature visualization of African Hunting Dog (Head) and Cheetah (Tail).

Figure 9. Feature visualization of confusing head and tail classes by UMAP [27] on ImageNet-LT [22]. The left column shows the
feature extracted by the model without auxiliary data, and the right is with the auxiliary fine-grained categories.



Figure 10. Effect of extending tail vs. extending head.

that increased granularity of training data benefits long-tail
learning ((Fig. 3)), we apply auxiliary fine-grained cate-
gories, which leads to better separation of the target classes
(Fig. 2(d)). We also conduct studies on how to select aux-
iliary categories: inappropriate auxiliary data can even hin-
der long-tail learning (Fig. 4), and there exists a trade-off
between the similarity and diversity of auxiliary data (Sec.
3.3). We believe these insights are valuable to the commu-
nity.
2) Fully automated data acquisition. Inspired by our find-
ings, we develop a fully automated pipeline for auxiliary
data acquisition. As detailed in Sec. 4.1, we utilize GPT-4
API to query neighbor categories for target classes. Then,
we retrieve images from the Web and automatically filter
these images. We will release all the associated code.
3) A new balanced loss with neighbor silencing. As
shown in Sec. 4.2, we design a new balanced loss with
neighbor silencing for improving long-tailed learning with
auxiliary data, which mitigates the distraction of extra
classes during training. After training, we directly mask out
the classifier weights of auxiliary categories to obtain the
final classifier. We find that this strategy works better than
retraining a new one by linear probing.

D.2. Limitations

This paper proposes to balance feature learning on down-
stream long-tail datasets by using visually similar cate-
gories. While it has achieved decent performance, there are
still the following limitations. First, we use LLM [28] to
obtain the names of similar categories. This step depends
on the capability of the large language model; if the model
has not seen or is unfamiliar with our query, then this step
will fail. Second, we obtain images through the web, but we
find that some categories are difficult to obtain online, such
as those related to the iNat18 categories. For some special
categories, we may need to look for more specialized web-
sites to crawl data.

Methods Backbone Overall Many Med. Few

Training from scratch

BCL [51] ResNet-50 56.0 67.5 52.7 34.8
BCL† [51] ResNet-50 59.8 68.6 58.1 41.2
PaCo [6] ResNet-50 57.0 66.4 54.5 38.6
PaCo† [6] ResNet-50 60.9 67.9 60.4 42.9
NCL [19] ResNet-50 57.4 67.1 54.9 38.5
NCL† [19] ResNet-50 61.4 68.1 61.2 43.3
Ours ResNet-50 64.5 70.1 64.8 47.9

Fine-tuning pre-trained model (CLIP)

BALLAD [25] ViT-B 75.7 79.1 74.5 69.8
BALLAD† [25] ViT-B 76.9 79.3 76.2 72.4
Decoder [42] ViT-B 73.2 77.9 71.9 64.7
Decoder† [42] ViT-B 75.2 78.1 74.9 68.6
Ours ViT-B 78.8 80.3 78.4 75.8

Fine-tuning pre-trained model (DINOv2)

Bal-BCE [44] ViT-B 79.7 84.1 78.5 71.3
Bal-BCE† [44] ViT-B 80.7 84.2 80.0 73.5
Ours ViT-B 82.0 84.7 81.5 76.2

Table 9. Performance on ImageNet-LT. We report accuracy (%)
of all methods under three pre-training paradigms. We also report
the performance of adding the auxiliary data, which denotes by †.

D.3. Future Work

In future research, we consider collecting large-scale unla-
beled data as an auxiliary dataset for downstream long-tail
datasets and then using this dataset to balance feature learn-
ing. Since it is an unlabeled dataset, we can only consider
its similarity to the downstream dataset, so compared to the
data collection method in this paper, we can have feature
learning on a larger scale. Secondly, we find that in a long-
tailed distribution dataset, the distribution of superclasses
also shows a long-tailed distribution in some datasets (e.g.,
iNat18 [39]), we will also take into account the long-tail
distribution of superclasses to achieve a better balance in
feature learning.

D.4. Previous Methods on Auxiliary Data

As shown in Tab. 9, Tab. 10 and Tab. 11, we conduct exper-
iments on more previous methods. We train these methods
using the same auxiliary data, which is denoted by †, and
conduct the comparison on three pre-training paradigms.
The results show that the auxiliary data can enhance the
performance of previous methods. Moreover, our methods
can further take advantage of the auxiliary data and pro-
mote the performance. The potential reason might be that
our method prevents the model from being overwhelmed by
auxiliary classes, and ensure alignment with the objectives
of the testing phase.



Method Backbone Overall Many Med. Few

Training from scratch

BCL [51] ResNet-50 71.8 70.1 71.6 72.3
BCL† [51] ResNet-50 72.9 70.3 72.9 73.4
PaCo [6] ResNet-50 73.2 70.4 72.8 73.6
PaCo† [6] ResNet-50 73.8 70.5 74.0 74.3
NCL [19] ResNet-50 74.2 72.0 74.9 73.8
NCL† [19] ResNet-50 74.8 72.3 75.5 74.5
Ours ResNet-50 75.9 74.9 76.2 75.7

Fine-tuning pre-trained model (CLIP)

BALLAD [25] ViT-B 75.0 77.5 75.9 73.1
BALLAD† [25] ViT-B 77.3 78.1 77.9 76.2
Ours ViT-B 80.9 79.6 80.1 82.1

Fine-tuning pre-trained model (DINOv2)

Bal-BCE [44] ViT-B 84.8 85.5 85.4 83.9
Bal-BCE† [44] ViT-B 85.6 85.9 85.8 85.1
Ours ViT-B 87.0 86.4 87.4 86.7

Table 10. Performance on iNaturalist 2018. We report accuracy
(%) of all methods under three pre-training paradigms. We also
report the performance of adding the auxiliary data, which denotes
by †.

Method Backbone Overall Many Med. Few

Training from scratch

PaCo [6] ResNet-152 41.2 36.1 47.9 35.3
PaCo† [6] ResNet-152 42.9 37.2 48.5 40.9
Ours ResNet-152 44.7 47.0 47.1 44.7

Fine-tuning pre-trained model (CLIP)

BALLAD [25] ViT-B 49.5 49.3 50.2 48.4
BALLAD† [25] ViT-B 50.6 50.1 51.0 50.4
Decoder [42] ViT-B 46.8 50.6 46.8 39.6
Decoder† [42] ViT-B 48.8 50.8 48.4 45.8
Ours ViT-B 52.4 51.6 53.0 52.3

Fine-tuning pre-trained model (DINOv2)

Bal-BCE [44] ViT-B 49.4 49.1 50.8 46.9
Bal-BCE [44] ViT-B 44.9 49.3 51.5 47.5
Ours ViT-B 50.8 49.4 52.4 49.2

Table 11. Performance on Places-LT. We report accuracy (%) of
all methods under three pre-training paradigms. We also report the
performance of adding the auxiliary data, which denotes by †.

D.5. Web Searching Data of Original Category

We aim to explore whether web searching images of the
same categories as the original dataset can benefit long-tail
learning. Using the original category names, we collect cor-
responding images. During training, we ensure the same
number of images across experiments. As shown in Tab. 12
and Tab. 13, our results indicate that web searching images
of the same categories do not improve performance, likely

Methods Many Medium Few Overall

Baseline 84.3 78.3 71.1 79.6
+ OC 84.4 75.4 65.9 77.6
+ NC 84.7 81.5 76.2 82.0
+ CD 84.4 83.7 83.2 83.9
+ CD + NC 85.4 85.0 84.8 85.1

Table 12. Neighbor Category (NC) v.s. Original Category
(OC) from web searching. Results are obtained on ImageNet-
LT. CD denotes the curated data from ImageNet-1k [33].

Methods Many Medium Few Overall

Baseline 49.2 51.3 46.1 49.5
+ OC 49.3 46.3 40.1 46.2
+ NC 49.4 52.4 49.2 50.8
+ CD 51.0 54.0 53.2 52.8
+ CD + NC 52.3 55.5 54.3 54.1

Table 13. Neighbor Category (NC) v.s. Original Category
(OC) from web searching. Results are obtained on Place-LT. CD
denotes the curated data from Places [49].

iNat18 Many Medium Few

Non-Filter 85.3 83.1 79.4
Filter-DINOv2 86.4 87.4 86.7
Filter-CLIP 86.3 87.5 86.5

Table 14. Effects of data filtering.

iNat18 Many Medium Few

Original 86.4 87.4 86.7
LLAMA 86.2 87.6 86.4
Public Corpus 85.9 86.1 84.5

Table 15. Validate alternative data acquisition tools..

due to a significant distribution gap between the online im-
ages and the original dataset. However, when curated data
(CD) is used, we observe a significant performance boost.
Furthermore, incorporating images from neighboring cate-
gories leads to greater improvement.

D.6. Effects of data filtering
In Tab. 14, we conducted experiments to validate the data
filtering module. Without filtering, performance drops sig-
nificantly due to the inclusion of irrelevant data. Mean-
while, replacing DINOv2 with CLIP has minimal impact
on model performance.

D.7. Validate alternative data acquisition tools
In Tab. 15, we validate the use of open-source language
models and public datasets. (1) Using a publicly available
model like Llama resulted in no significant performance
change, indicating that our system does not rely on GPT-
4, as the querying task is relatively simple. (2) When re-
trieving images via text from fixed public datasets (LAION
+ DataComp1B + ImageNet21K), certain category images



iNat18 Many Medium Few

IN-LT 84.2 78.4 71.2
iNat18 85.6 85.8 84.1

Table 16. Average performance of previous methods using DI-
NOv2..

Figure 11. Effect of granularity vs. imbalance ratio using DI-
NOv2.

could not be queried, and data diversity was limited, leading
to a performance drop. However, the results remain reason-
ably strong, further demonstrating the robustness and gen-
eralizability of our approach.

D.8. Analysis using DINOv2
We conduct the analysis on DINOv2. (1) We use DI-
NOv2 to reproduce four classic and state-of-the-art long-tail
learning methods [2,7,14,5]. As shown in Tab. 16, we re-
port the average results on ImageNet-LT and iNat18, where
iNat18 continues to demonstrate a more balanced perfor-
mance across many and tail categories. (2) As shown in
Fig. 11, we conduct the same experiment as in Fig. 3 using
DINOv2 and observe that the trend remains consistent as in
the paper. (3) Further, our visualizations (Fig. 2, Fig. 6, and
Fig. 1(Appendix)) are all based on DINOv2.
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