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Abstract

This supplementary document offers an in-depth explo-
ration of the methodologies, theoretical foundations, and
experimental results presented in the main manuscript, pro-
viding additional analysis and valuable insights. To ensure
a thorough understanding of our contributions, we include
detailed derivations of the core equations underpinning the
proposed approach, alongside a comprehensive exposition
of the Diffusion Classifier architecture, emphasizing its de-
sign rationale and operational intricacies.

Furthermore, we present an expanded discussion on un-
certainty quantification, highlighting its critical role in im-
proving model reliability and interpretability. To substan-
tiate the robustness and versatility of our method, we pro-
vide additional qualitative visualizations that demonstrate
its efficacy across diverse scenarios. Lastly, we include an
expert load analysis, illustrating how the model efficiently
allocates computational resources and adapts dynamically
to varying data complexities.

By addressing these elements, this supplementary mate-
rial seeks to deepen the reader’s understanding of our work
and reinforce its relevance in advancing the state of the art.

1. Derivations
Forward Diffusion Sampling ft at Arbitrary t steps. We
incorporate the prior prediction, ρθ, from the Dyn-MoE ag-
gregator into the forward diffusion process. In this section,
we derive the parameters of the sampling distribution for the
forward diffusion process at an arbitrary time step t. Fol-
lowing the methodology outlined in [7], the detailed formu-
lation of Eq. 6 from the main manuscript is obtained through
reparameterization techniques:
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where αt = 1 − βt. As t increasing to T,
√
αt is limited to

0, where:

fT = ρθ + ϵ, ϵ ∼ N (0, I). (9)

Considering the independent additivity property of the
Gaussian distribution, we observe that the endpoint of the
forward diffusion process intuitively converges to ρθ, which
can be formally defined as:

fT ∼ N (ρθ, I). (10)



Posterior Mean µ̃ and Variance β̃ in Reverse Denoising.
Meanwhile, we integrated the prior prediction ρθ into the
reverse denoising process, significantly enhancing its effi-
ciency. In this section, we derive the mean µ̃ and variance β̃
for the reverse denoising process, as formalized in Eq. 7 of
the main manuscript. Utilizing conditional Bayesian princi-
ples, the reverse denoising process can be decomposed into
a series of sub-processes, which can be formulated as:
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Subsequently, taking standard Gaussian probability density
function in Eq. 15 for reference:
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We derive the posterior variance β̃t, and γ3 =
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Furthermore, we calculate the following coefficients γ0,γ1
and γ2 in the posterior mean, formulated as:
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Table 1. Architecture of our Diff-C.

Input gα, ft, ρθ, t

Condition
Encoder

c =
∑k

r=0(cr · er)
h1 = ϱ (f1,c(c))

h2 = ϱ (f2,c(h1))

Z = f3,c(h2)

Noise
Estimation

h1,y = ϱ (f1,y(ft ⊕ ρθ) ⊙ f1,t(t))

h1,t = Z ⊙ h1,y

h2,t = ϱ (f2,h(h1,t)⊙ f2,t(t))

h3,t = ϱ (f3,h(h2,t)⊙ f3,t(t))

Output ϵθ = f4(h3,t)
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Hence, the posterior mean µ̃ in Eq. 7 (main manuscript)
can be calculated as:

µ̃(f t, f0,ρθ) = γ0f0 + γ1f t + γ2ρθ. (22)

2. Diffusion Classifier (Diff-C) Architecture
We present the detailed architecture of the Diff-C model,
consisting of a condition encoder and a noise estimation
network, in Tab. 1. The primary objective of Diff-C is to
estimate the intermediate noise ϵθ for iterative denoising.
In this architecture, ⊕ and ⊙ represent concatenation and
Hadamard product operations, respectively, while ϱ denotes
the Softplus activation function. Fully connected layers are
denoted as f , with their corresponding outputs represented
as h, differentiated using subscripts for clarity.

3. Detailed Discussion on Uncertainty
To validate the superior confidence of MExD in its predic-
tions, we employ a statistical testing approach to estimate
uncertainty, inspired by [3]. Hypothesis testing offers an
advantage over information-theoretic metrics in that the re-
sulting p-value provides a more interpretable measure of the
risk associated with rejecting the null hypothesis. Specifi-
cally, to quantify MExD’s confidence in its predictions, we
examine whether the difference between the empirical dis-
tributions of the two most probable classes across multiple
posterior samples is statistically significant.

Given a bag, we perform 100 iterations to generate a
set of posterior samples of predictive probabilities, apply-
ing a paired two-sample t-test. The null hypothesis assumes
that the population means of the two groups (correspond-
ing to the two highest probability classes) are equal, i.e.,
µ1 = µ2, while the alternative hypothesis posits otherwise.



Figure 1. Positive vs. Negative wo/w Dyn-MoE: We present a
comparative distribution of the ratios of positive to negative in-
stances (y-axis) across all positive slides in the Camelyon16 [1]
dataset, with and without the application of Dyn-MoE. These
results demonstrate that the Dyn-MoE in MExD effectively in-
creases the percentage of positive instances, highlighting its ca-
pability to address instance imbalance.

Figure 2. Expert Load Analysis: For slides of each subtype, we
calculated the average number of instances (y-axis) assigned to
each expert. The results highlight a clear correlation between sub-
types and specialized experts, showcasing the tailored expertise of
each expert.

In essence, a prediction rejected by the t-test indicates that
the difference between the two highest probability classes
is statistically significant, signifying high certainty in the
prediction; conversely, failure to reject the null hypothesis
suggests uncertainty.

Using the t-test results with specific significance levels
(α), we can straightforwardly compute the Patch Accuracy
vs Patch Uncertainty (PAvPU) [6], defined as follows:

PAvPU =
nac + niu

nac + nau + nic + niu
, (23)

where nac, nau represent the number of predictions that are
both correct and certain, and correct but uncertain, respec-
tively. Similarly, nic and niu denote the number of predic-
tions that are incorrect but certain, and incorrect and uncer-
tain, respectively.

As shown in Tab. 2, we compare MExD with

Table 2. Quantitative Uncertainty Assessment: Using PAvPU
(α-value = 0.05) [6], we conducted hypothesis testing with
CTransPath [9] as fPFE. Evaluations were performed on the
Camelyon16 (129 slides), TCGA-NSCLC (210 slides), and
BRACS (85 slides) datasets.

Method Dataset nac nau nic niu ACC PAvPU

ACMIL
C16 121 1 7 0 94.57 93.80

TCGA 197 1 12 0 94.29 93.81
BRACS 61 2 18 4 74.12 76.47

IBMIL
C16 120 2 7 0 94.57 93.02

TCGA 194 3 9 4 93.81 94.29
BRACS 62 1 20 2 74.12 75.29

TransMIL
C16 122 0 7 0 94.57 94.57

TCGA 193 0 17 0 91.90 91.90
BRACS 62 0 23 0 72.94 72.94

MambaMIL
C16 123 0 6 0 95.35 95.35

TCGA 199 0 11 0 94.76 94.76
BRACS 61 0 24 0 71.76 71.76

MExD
C16 126 0 2 1 97.67 98.45

TCGA 203 0 5 2 96.67 97.62
BRACS 65 0 16 4 76.47 81.18

ACMIL [11], IBMIL [4], TransMIL [8], and Mam-
baMIL [10]. Both ACMIL and IBMIL experience higher
uncertainty in correct predictions due to their tailored in-
stance selection processes, leading to lower PAvPU scores.
In contrast, TransMIL and MambaMIL exhibit confidence
in their predictions, even for incorrect cases. Notably,
our MExD demonstrates certainty in all correct predictions
while maintaining uncertainty for some incorrect predic-
tions.

We emphasize that uncertainty metrics serve as an indi-
cator of whether a model’s prediction for each bag can be
trusted. For incorrect and uncertain predictions, the bag can
be referred to clinicians for further evaluation, mitigating
the risk of cancerous misjudgments. This approach aligns
well with the goals of human-machine collaboration in clin-
ical settings [5].

A critical prerequisite for conducting the paired two-
sample t-test is the normality assumption. To verify this,
we examine Q-Q plots for the distributions of the differ-
ences between the two highest probability classes within
each bag. As shown in the example plots in Fig. 3, all points
align closely with the 45-degree line, confirming that the
differences are approximately normally distributed.

4. Additional Qualitative Visualization

We provide additional visualizations of patch-wise router
scores for positive bags to highlight the instance sparsifi-
cation capability of Dyn-MoE. As illustrated in Fig. 4, the
first column displays all slides, with cancerous regions out-
lined in green. It is evident that positive expert 1 in MExD
effectively identifies true positive instances, while expert 0
predominantly focuses on true negative instances. This sep-
aration facilitates the partitioning of instances based on dis-



Figure 3. Normality Assumption Assessment: Q-Q plots illustrating the probability differences between the top two predicted classes
within a bag, with five bags from each benchmark selected for visualization.

tinct properties.
Each expert then selects the most representative in-

stances by applying a ‘top-k’ filtering mechanism to the
router scores, using different thresholds (α0 = 0.5 for
positive instances and α1 = 0.25 for negative instances).
This process eliminates redundant instances and addresses
the inherent imbalance between positive and negative in-
stances. For particularly challenging slides, as shown in
Fig. 4, where positive instances are vastly outnumbered by
negative ones, MExD demonstrates the ability to generate
accurate predictions by leveraging Dyn-MoE to sparsify the
original instance sets.

To provide further insight, Fig. 1 compares the distri-
bution of positive to negative instance ratios across all 49
positive slides in Camelyon16 [1]. The results indicate an
increased proportion of positive instances in the sparse in-
stance set compared to negative ones, highlighting the ef-
fectiveness of Dyn-MoE in mitigating instance imbalance.

5. Expert Load Analysis
In this section, we thoroughly examine the workload distri-
bution across distinct experts in MExD across all bench-
marks. As depicted in Fig. 2, each subtype is primar-
ily handled by a specific expert, which proficiently se-
lects strongly relevant instances. This specialization un-
derscores the model’s capacity to adapt dynamically with-
out over-relying on any single expert. Instead, MExD en-
sures that each expert is specialized in processing its respec-
tive instances, enabling efficient handling of diverse slides
through dynamic scheduling.

To validate this, we calculated the average number of
instances allocated to each expert for slides belonging to
a specific subtype. The details of the subtypes and corre-
sponding datasets are as follows:

• Camelyon16 [1]: The test split of the Camelyon16
dataset includes 49 positive slides and 80 negative slides.

• TCGA-NSCLC: The test split of the TCGA-NSCLC
dataset comprises 107 Lung Squamous Cell Carcinoma
(LUSC) slides and 103 Lung Adenocarcinoma (LUAD)
slides.

• BRACS [2]: The test split of the BRACS dataset includes
30 Benign slides, 23 Atypical slides, and 32 Malignant
slides.

These results demonstrate MExD’s ability to efficiently
allocate instances to experts based on their relevance to spe-
cific subtypes, ensuring balanced workload distribution and
optimal performance across heterogeneous datasets.
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