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A. Supplementary Material Overview

In this supplementary material, we provide additional ex-
planations and experimental results referenced in the main
paper. The content is organized as follows:
• Methodology of Mixup-Sign Quantization in Appendix

B.
• More Implementation Details in Appendix C.
• FP vs. INT in Post-Training Quantization in Appendix D.
• Comprehensive Analysis of TALoRA Performance in

Appendix E.
• Supplementary Performance Evaluation in Appendix F.
• Extensive Comparison with EfficientDM and QUEST in

Appendix G.
• Additional Visualization Results in Appendix H.

B. Methodology of Mixup-Sign Quantization

We implement the proposed MSFP strategy using a
search-based method [1, 10], wherein the quantization pa-
rameters are determined by minimizing the MSE between
the distributions before and after quantization.

To clarify, the quantization parameters for the signed FP
quantization include the format, bias b, and sign bit s set to
1, whereas the quantization parameters for the unsigned FP
quantization include the format, bias b, sign bit s set to 0,
and zero point zp. All quantization parameters are assigned
a search space during initialization.

As mentioned in the main text, the bias b serves as a
threshold in FP quantization:

maxval = 22
x−1−b ·

(
1− 1

2y

)
(1)

The maximum value, denoted as maxval, is determined
by the format (e.g.,ExMy) abd the bias b, and represents
the maximum discrete value achievable in FP quantization.
Notably, maxval and b are directly correlated, and for con-
venience, we will refer to maxval in subsequent discus-
sions as the equivalent to the bias b.

In the MSFP strategy, initialization is divided into two
parts: weight initialization and activation initialization.
During initialization, we determine the optimal quantiza-
tion parameter settings, and the process is outlined in Algo-
rithm 1: In the first stage, the search for signed FP quan-
tization parameters is applicable to all cases. In the sec-
ond stage, the search for unsigned FP quantization param-
eters is specifically applied to the activation initialization

Algorithm 1 Initialization of Quantization Parameters
1: Input: format options, maxval options, (zp options),

(unsigned format options)
2: Output: format, maxval, (zp)
3:
4: #10000 is huge enough
5: min mse = 10000
6: s = 1
7: for f in format options do
8: for prev m in maxval options do
9: prev mse = calculate mse(f, prev m, s)

10: if prev mse < min mse then
11: min mse = prev mse
12: format = f
13: maxval = prev m
14: end if
15: end for
16: end for
17:
18: #only for unsigned FP quantization
19: s = 0
20: for f in unsigned format options do
21: for prev m in maxval options do
22: for prev zp in zp options do
23: prev mse =

calculate mse(f, prev m, prev zp, s)
24: if prev mse < min mse then
25: min mse = prev mse
26: format = f
27: maxval = prev m
28: zp = prev zp
29: end if
30: end for
31: end for
32: end for

of the Anomalous-Activation-Distribution Layers (AALs)
mentioned in the main text.

Additionally, due to the significant variability in the
search space for maxval, which depends on the differing
distributions of the data, therefore, prior to initiating the
search for quantizer parameters, the first step involves per-
forming several random forward passes to capture the max-
imum value observed for each quantizer. This value is then
used as the initial maxval 0.

Weight Initialization. For weight initialization, since
the distribution of weights typically approximates a nor-
mal distribution (as shown in Figure 1), we deploy signed
FP quantization. In the search for the format of signed



Search Space Bits (W/A) FID ↓
[0,maxval 0] 6/32 10.14
[0,2maxval 0] 6/32 10.26

[0.6maxval 0,2maxval 0] 6/32 9.36
[0.7maxval 0,2maxval 0] 6/32 6.46
[0.8maxval 0,2maxval 0] 6/32 5.58
[0.9maxval 0,2maxval 0] 6/32 5.13

[maxval 0,2maxval 0] 6/32 5.83

Table 1. The impact of different maxval search spaces in weight
initialization on the DDIM model performance on CelebA dataset.

FP quantization, we define a search space of size 4 for
4-bit, 6-bit, and 8-bit representations, encompassing the
most expressive data formats for each bit-width while strik-
ing a balance between computational overhead and perfor-
mance [6, 13, 15].

For the search of maxval in weights, we extend the pre-
vious search range of range(0,maxval 0, 0.001) to ex-
plore a more refined and reasonable search space. On the
one hand, considering that large-value weights are relatively
few but have a significant impact, we set the lower bound
of the search to a value slightly smaller than maxval 0 to
avoid excessive loss of essential large-value weights. On
the other hand, setting the upper bound to maxval 0 may
not guarantee the minimization of MSE. As inferred from
the representation of FP quantization, any quantizer with
its maxval larger than 2 × maxval 0 cannot result in a
smaller MSE, so we set the upper bound of the search to
2×maxval 0. As shown in Table 1, our exploration across
different search spaces demonstrates the effectiveness of the
redefined search space of maxval.

Activation Initialization. For activation initialization,
based on the analysis in the main text, we employ signed
FP quantization for NALs with distribution approximately
following a normal distribution, and adopt a mixup-sign FP
quantization strategy for AALs with asymmetric distribu-
tions. Unlike weight initialization, where weights remain
static, activation initialization needs to account for potential
activation distributions. To ensure that the activations used
for initialization are representative, we introduce a calibra-
tion dataset [7, 14], as is common in INT quantization.

Given the increased complexity and randomness of acti-
vation distributions, we include all possible formats for dif-
ferent bit-widths within the search space for format. No-
tably, for n-bit unsigned FP quantization with the ExMy
format, the condition x+ y+ s = n applies, where s = 0,
distinguishing its format from that of signed FP quantiza-
tion, which includes s set to 1 under the same bit-width.
Accordingly, the search range for maxval is adjusted to
linspace(0,maxval 0, 100), preventing excessive compu-
tational overhead. Lastly, for the zero point zp introduced
in unsigned FP quantization, since the minimum value of

the distribution is constrained by SiLU to approximately -
0.278, assigning zp a search space of linsapce(−0.3, 0, 6)
is sufficient.

C. More Implementation Details
FP PTQ Configuration. Following the procedure out-

lined in Appendix B, we deploy our MSFP strategy for both
weights and activations. The initialization of maxval 0 is
achieved by generating 2000 images through random for-
ward passes. Subsequently, a calibration dataset is con-
structed based on the output of the full-precision model, fol-
lowing the approach of Q-Diffusion [7]. Specifically, 256
samples are used for the DDIM model, while 128 samples
are used for the LDM model.

For weight initialization, the search spaces for maxval
and format are presented in Table 2. For activation initial-
ization, the search spaces for maxval, fomrat and zp are
thoroughly discussed and provided in Appendix B.

Bit Search Space
(maxval)

Search Space
(format)

4 [0.8maxval 0,2maxval 0] [E3M0,E2M1,E1M2,E0M3]
6 [0.9maxval 0,2maxval 0] [E4M1,E3M2,E2M3,E1M4]
8 [0.9maxval 0,2maxval 0] [E5M2,E4M3,E3M4,E2M5]

Table 2. Search spaces for different quantization parameters under
different bit-widths in weight initialization.

Fine-tuning Configuration. For the noise estimation
U-Net, all quantized layers, except for the input and out-
put layers, are quantized and equipped with QLoRA-based
TALoRAs [3]. Each TALoRA is initialized with a rank of
32. The selection of different TALoRAs at each timestep
is managed by a router, which is implemented as a linear
layer. The input channels of the router match the channel
count of the timestep embedding in the diffusion model.

Adam optimizers are assigned to both the TALoRAs and
the router, with a learning rate of 1e-4 for both components.
Fine-tuning is performed for 160 epochs with a batch size
of 16 on DDIM models and 320 epochs with a batch size of
8 on LDM models. Notably, the batch size for the ImageNet
dataset is reduced to 4.

D. FP vs. INT in Post-Training Quantization
Table 3 presents a performance comparison between the

6-bit model initialized with MSFP and several 6-bit mod-
els based on traditional INT quantization [4, 7, 14, 17]. As
shown, even without fine-tuning, our approach significantly
outperforms existing SOTA methods in handling 6-bit quan-
tization for diffusion models. This highlights that FP quan-
tization is a more effective choice for handling low-bit ac-
tivation quantization in diffusion models, a task that is both
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Figure 1. The weight distribution of certain layers in the DDIM model on CelebA dataset.

Task Method Prec.
(W/A) FID ↓ IS ↑

CelebA
64x64

DDIM
steps = 100

FP 32/32 6.49 2.61

LSQ 6/6 78.37 1.94
PTQ4DM 6/6 24.96 2.13

Q-Diffusion 6/6 23.37 2.16
ADP-DM 6/6 16.86 2.30

Ours(MSFP) 6/6 9.51 2.78

Table 3. Quantization performance of unconditional generation. In
this case, ’Ours’ refers to the method that deploys only the MSFP
strategy without any fine-tuning. ‘Prec. (W/A)’ denotes the quan-
tization bit-width.

challenging and crucial, compared to INT-based methods.

E. Comprehensive Analysis of TALoRA Per-
formance

E.1. TALoRA Outperforms Rank-Scaled LoRA

In our approach, we introduce multiple TALoRAs for the
majority of quantized layers, which leads to an increase in
the model size. Some may question whether the observed
performance improvement is simply due to the larger mem-
ory footprint of the LoRAs. However, in practice, only

one TALoRA is active at each timestep, which differs fun-
damentally from using a larger-rank LoRA, as the latter
would result in higher training and inference costs. Further-
more, Table 4 presents the results of fine-tuning with two
TALoRAs (rank=32) and a single QLoRA (rank=64). Our
method achieves even better performance, demonstrating
that our timestep-aware fine-tuning strategy effectively re-
covers the performance lost during quantization in diffusion
models, with lower overhead and enhanced performance.

Method Rank Bits(W/A) FID↓
FP / 32/32 6.49

single-LoRA 64 4/4 7.75
TALoRA(h=2) 32 4/4 7.69

Table 4. Comparison between TALoRA and rank-scaled LoRA in
fine-tuning 4-bit DDIM models on CelebA dataset. ’Rank’ refers
to the LoRA rank.

E.2. Impact of TALoRA Quantity
As illustrated in Figure 2, when deploying four TALo-

RAs, the distributions of LoRA allocation across different
timesteps exhibits a strong regularity: in most cases, regard-
less of the dataset, the majority of timesteps utilize only
two LoRAs. This suggests that fine-tuning low-bit diffu-
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Figure 2. Distribution of LoRA allocations over timesteps ob-
tained after router training on different datasets, when h = 4.

sion models predominantly follows a two-stage task pattern,
which aligns with the motivation behind introducing TALo-
RAs—viewing the denoising process as a progression from
restoring coarse structures to refining intricate details [16].

Experimental results in the main text further demon-
strates that deploying four TALoRAs does not yield better
results compared to deploying two TALoRAs. In fact, in
most cases, the latter achieves superior results on 4-bit dif-
fusion models. This aligns with our earlier analysis: two
TALoRAs are sufficient to handle the fine-tuning task effec-
tively, while the introduction of additional TALoRAs could
reduce the training opportunities for the most impactful Lo-
RAs, ultimately compromising fine-tuning performance.

F. Supplementary Performance Evaluation

To further validate the effectiveness of our approach, we
conduct supplementary experiments. For the DDIM model,
where prior methods have struggled, our approach is eval-
uated on the CelebA dataset [11]—a more complex dataset
with higher image resolutions corresponding to a more in-
tricate DDIM model. As shown in Table 5, our method
achieves cutting-edge performance under both 4-bit and 6-
bit settings. Notably, our 4-bit diffusion model exhibits per-
formance on FID and IS metrics comparable to full preci-
sion, and our method even outperforms the full-precision
model under the 6-bit setting.

For the LDM model, we further evaluate it on the Im-
ageNet dataset [2] using two advanced sampling methods,
PLMS [9] and DPM-Solver [12], which are more sophis-
ticated and computationally demanding during fine-tuning.
Table 6 demonstrates that our method maintains robust per-
formance under both 4-bit and 6-bit quantization settings,
achieving SOTA results on the more reliable sFID and IS
metrics in ImageNet.

Furthermore, we apply our method to the task of quantiz-
ing text-to-image diffusion models, specifically deploying
it on Stable Diffusion with the MS-COCO dataset [8]. Our
approach also delivers highly satisfactory results, with de-
tailed visualizations provided in Appendix H.

Task Method Prec.
(W/A) FID ↓ IS ↑

CelebA
64x64

DDIM
steps = 100

FP 32/32 6.49 2.61

Q-Diffusion 6/6 23.37 2.16
ADP-DM 6/6 16.86 2.30
Ours(h=2) 6/6 5.38 2.67
Ours(h=4) 6/6 5.36 2.66

Q-Diffusion 4/4 N/A N/A
ADP-DM 4/4 N/A N/A
Ours(h=2) 4/4 7.69 2.59
Ours(h=4) 4/4 7.84 2.60

Table 5. Quantization performance of unconditional generation.
‘Prec. (W/A)’ denotes the quantization bit-width. ‘N/A’ denotes
failed image generation. h denotes the size of LoRA Hub.

Task Method Prec.
(W/A) sFID ↓ FID ↓ IS ↑

LDM-4

PLMS
steps = 20

FP 32/32 7.08 11.71 379.19

EDA-DM 6/6 6.59 11.27 363.00
EfficientDM 6/6 9.36 9.85 325.13

Ours(h=2) 6/6 5.63 10.35 363.79
Ours(h=4) 6/6 5.33 10.25 364.27

EDA-DM 4/4 32.63 17.56 203.15
EfficientDM 4/4 9.89 14.78 103.34
Ours(h=2) 4/4 7.39 7.27 196.32
Ours(h=4) 4/4 7.83 7.83 193.11

LDM-4

DPM-
Solver

steps = 20

FP 32/32 6.85 11.44 373.12

EDA-DM 6/6 7.95 11.14 357.16
EfficientDM 6/6 9.30 8.54 336.11
Ours(h=2) 6/6 6.86 9.61 363.71
Ours(h=4) 6/6 6.88 9.59 364.30

EDA-DM 4/4 39.40 30.86 138.01
EfficientDM 4/4 13.82 14.36 109.52

Ours(h=2) 4/4 12.61 8.46 257.33
Ours(h=4) 4/4 14.56 9.64 238.07

Table 6. Quantization performance of conditional generation for
fully-quantized LDM-4 models on ImageNet 256×256 with 20
steps, using PLMS and DPM-Solver as sampling methods. ‘Prec.
(W/A)’ denotes the quantization bit-width. h denotes the size of
LoRA Hub.

G. Extensive Comparison with EfficientDM
and QUEST

As mentioned in the main text, prior fine-tuning-
based methods, such as EfficientDM [5] and Quest [18],
adopt specialized experimental setups. EfficientDM re-
tains all skip connection layers and the op layers within
Upsample blocks in full precision. These layers consti-



Task Settings Method Prec.
(W/A) FID ↓

LSUN-
Church

256 × 256

LDM-8
steps = 100

eta = 0.0

- FP 32/32 4.06

Partial
Quantization

EfficientDM 4/4 13.68
Ours(h=2) 4/4 7.95

Full
Quantization

EfficientDM 4/4 18.40
Ours(h=2) 4/4 8.81

Channel-wise
for Activation

QuEST 4/4 11.76
Ours(h=2) 4/4 -

Layer-wise
for Activation

QuEST 4/4 13.03
Ours(h=2) 4/4 8.81

Table 7. Comparison with EfficientDM and QuEST under specific
settings. ‘Prec. (W/A)’ denotes the quantization bit-width. h de-
notes the size of LoRA Hub.

tute a significant portion of the model, and their quanti-
zation significantly affects performance. Therefore, in our
comparative experiments, we apply standard quantization to
these layers. In contrast, Quest adopts a different strategy
by modifying the quantization granularity for activations.
Specifically, in low-bit quantization, channel-wise quanti-
zation of weights is a common approach. However, Quest
extends this to activations, introducing substantial compu-
tational overhead compared to the mainstream layer-wise
quantization. To ensure a fair comparison, we employ con-
ventional layer-wise quantization for activations.

For a comprehensive evaluation, we align our method
with the specific settings of EfficientDM and consider the
implications of Quest’s setup. As shown in Table 7, un-
der EfficientDM’s configuration, our 4-bit LDM model
achieves significantly better results on the Church dataset,
with an FID score that is 6.39 lower than EfficientDM’s.
However, we choose not to replicate Quest’s specific set-
tings for two key reasons. First, despite using the more ef-
ficient layer-wise quantization for both weights and activa-
tions, our method already surpasses Quest’s performance.
Specifically, under the 4-bit setting, our method achieves
an FID of 8.81, compared to Quest’s 11.76, which re-
lies on computationally expensive channel-wise quantiza-
tion for both. Second, our approach relies on FP quantiza-
tion, and incorporating channel-wise quantization necessi-
tates search-based initialization for every channel, which is
computationally infeasible.
H. Additional Visualization Results
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Figure 3. Visualization of random samples from 4-bit LDM-4 on LSUN-Bedroom across different LoRA Hub sizes h.
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Figure 4. Visualization of random samples from quantized LDM-4 on ImageNet. The size of LoRA Hub is 2.
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Figure 5. Comparison of text-to-image outputs from 6-bit quantized and full-precision Stable Diffusion models. h denotes the size of
LoRA Hub.
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