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Supplementary Material

A. Implementation Details

Iou-based object association algorithm. In our approach,
we define keyframe as the frame where new objects appear.
The keyframe is served as the last frame of the previous
video clip, and is also served as the first frame of the current
video clip.

Although the video predictor of SAM2 [35] can track
objects and ensure masks fully and accurately cover them
even under conditions such as occlusion, disappearance,
and viewpoint changes, its effectiveness gradually dimin-
ishes as the number of tracking frames increases, potentially
leading to blurred boundaries.

When applying the image predictor of SAM2 to the
first frame of the current video (the same as the last frame
of the previous clip) for object segmentation, it produces
clear mask boundaries. Due to constraints like occlusion
and viewpoint, the resulting masks may struggle to main-
tain completeness.

To complement the strengths of both approaches, after
using SAM2 to track objects within video clips between
keyframes, we employ an IoU-based object association al-
gorithm at the junctions of these clips (specifically at the
keyframes). Specifically, for the keyframe of current video,
we generate two sets of masks. The first set, known as track-
ing masks, is the tracking result of the last frame of the pre-
vious video clip obtained by the video predictor of SAM2.
The second set, referred to as keyframe masks, is generated
by the image predictor of SAM2 on the first frame of the
current video clip. We utilize the IoU score to associate
and merge the two mask sets from the same object. This
method not only generates accurate mask prompts but also
ensures that objects tracked in the previous video can con-
tinue to be tracked in the current video, thereby maintaining
mask consistency. More specifically, we define the tracking
masks as A,, = {a;|i € [1,m]}, and the keyframe masks
as B,, = {bj|j € [1,n]}. Thus, the IoU score between a;
and b; can be defined as
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Similar to work [24], we define the intersection over the
tracking mask (IoT) and the intersection over the keyframe
mask (IoK) to measure the overlap between two sets of
masks for the same object. Their definitions are as follows:
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Figure 6. Examples of four types of mask overlap.

We calculate the overlap score between a; and b; based
on the Eq. (13) and Eq. (14), resulting in four possible sce-
narios. Firstly, as shown in Fig. 6 (a), when the IoU exceeds
a specified threshold (which we set to 0.8), we consider it
a match for the same object and choose the keyframe mask
as the final mask prompt due to its clearer boundaries. Sec-
ondly, when IoT exceeds 0.8 and IoK falls below 0.4, we
relate this to the scenario shown in Fig. 6 (b), where most of
the tracking mask is enclosed by the keyframe mask. This
may occur because the image predictor of SAM2 is lim-
ited by factors such as viewpoint and occlusion, leading to
under-segmentation of the object. Consequently, we select
the tracking mask as the final mask prompt. Similarly, as il-
lustrated in Fig. 6 (c), when IoK is greater than 0.8 and IoT
is less than 0.4, the keyframe mask is largely surrounded by
the tracking mask. This could be due to boundary blurring
or expansion issues caused by the video predictor of SAM?2
after tracking multiple frames. Therefore, we choose the
keyframe mask as the final mask prompt. Fig. 6 (d) rep-
resents scenarios where none of the above three conditions
are met, indicating that the two masks do not correspond to
the same object.

Semantic instance segmentation. OpenMask3D [42] uses
a pre-trained 3D instance segmentation model to generate
class-agnostic 3D masks. These masks are used to select
high-quality 2D image projections, which are then input
into CLIP [34] to assign semantic labels. We follow the
OpenMask3D approach to evaluate semantic instance seg-
mentation. Specifically, we replace the class-agnostic 3D
masks produced by the 3D instance segmentation model in
OpenMask3D with the class-agnostic 3D masks output by
our method on ScanNet200 [36]. All other steps remain
consistent with the OpenMask3D process.

Parameter settings. All experiments are performed on a
single RTX A6000. During the keyframe extraction pro-
cess, we configure the window size to 100 frames. The
threshold in the iterative graph clustering is empirically set
as [0.9, 0.75, 0.6, 0.45, 0.3] for ScanNetV2 and [0.9, 0.75,
0.6] for ScanNet++.



B. Additional Qualitative Results

We show more visual comparisons between our method and
SAM3D [47] and SAI3D [49] on ScanNetV2 [5] dataset in
Fig. 8 and ScanNet++ [48] dataset in Fig. 9. SAM3D and
SAI3D struggle with projection errors, using a frame-by-
frame segmentation method across multiple views that re-
sults in a lack of view consistency. In contrast, our approach
consolidates view consistency and filters out low-quality 2D
masks, enabling us to achieve comprehensive and robust 3D
instance segmentation.

As depicted in Fig. 10, we present the visual compar-
ison results of semantic instance segmentation on Scan-
Net200 [36]. In semantic instance segmentation tasks, as
shown in Fig. 10, given a text prompt, our method can
effectively identify various objects in complex environ-
ments, even when they are surrounded and occluded by oth-
ers (such as the “piano” and “‘guitar”). Additionally, our
method can accurately identify small objects (such as the
“hat” and “fire extinguisher”) as well as objects located in
wall corners (like the “trash can” and “pillow”). Since our
method can generate precise and complete 3D segmenta-
tion, we can maintain clear object boundaries even in com-
plex scenes. This capability is due to our consolidation of
multi-view consistency.

C. Additional Quantitative Results

We show more quantitative results of class-agnostic 3D in-
stance segmentation on ScanNetV2 [5].

Efficiency. Table. 5 presents the time required for all steps
of graph construction and clustering (Sec. 3.3 and Sec. 3.4),
showing that each scene, containing an average of 158K
points, takes about 17s with our method, compared to 13s
with SAI3D [49]. Only a single projection is required
throughout the entire process to obtain the mask label ma-
trix for all points across all frames. In each iterative clus-
tering, superpoint graph construction, superpoint clustering,
and superpoint updates are required. We can index the mask
label matrix to obtain the superpoint mask label. The con-
struction of the graph is efficient, and the number of su-
perpoints gradually decreases after each iteration, making
processing time gradually reduced.

Table 5. Time of graph construction and clustering on ScanNetV2.

Projection Iter 1 Iter2 Iter3 TIter4 IterS  All
4.82s 6.21s 2.05s 1.67s 1.49s 1.40s 17.64s

Ablation on the number of 2D images. In Fig. 7, fol-
lowing the approach of SAI3D, we conducted robustness
experiments on ScanNetV2 to evaluate performance un-
der varying proportions of images. Our method is robust
across different image quantities and consistently outper-
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Figure 7. Correlation of performance with the number of images.

forms SAI3D. As the number of images decreases, the
difference between frames increases, leading to more ex-
tracted keyframes and ultimately making nearly every frame
a keyframe. Consequently, when the image density be-
comes extremely sparse, our method may essentially tran-
sition to frame-by-frame segmentation. However, with the
enhancement of mask consolidation, our method still out-
performs SAI3D.

Ablation of mask consolidation. Initially, Eq. (11) did
not explicitly incorporate detailed weighting strategies, and
the weights were treated equally. We multiply three sub-
weights to obtain the overall weight, followed by weight
normalization, eliminating explicit scaling issue. The over-
all weight becomes significant only when all three sub-
weights are large, ie. superpoints are only merged when
all sub-weights have high scores. We conduct ablation ex-
periments for the mask consolidation module and as shown
in Table. 6, “Visibility” and “Distance” are relatively more
important.

Table 6. Ablations for mask consolidation on ScanNetV2.

Visibility Distance Purity mAP AP5y APos
32.1 499 683

v 33.0 505 689
v v 337 521 695
v v v 340 527 703

Comparing gaussian model. We also conducted com-
parative experiments with the 3D Gaussian segmentation
method. Since it generates its own 3D scenes, to ensure
fairness, we projected its 2D rendered segmentation results
onto the 3D point cloud to create 3D segmentation. Our
method achieve 44.2, 64.6 and 80.4 in terms of mAP, AP5
and AP»s5, significantly surpassing those of Gaga [28] (4.6,
13.3, 33.3).

New object coverage. In our method, if a new object is
missed, it lacks a corresponding 2D mask and is excluded
from the lifting process, ultimately remaining unsegmented.
By projecting the 3D labels onto 2D, we found that, on av-
erage, each object has a corresponding 2D mask in 97 % of
its visible frames. Furthermore, only 0.6% of all objects
remain unsegmented in the final segmentation. This clearly
demonstrates that our method is effective in most cases.
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Figure 8. Additional visual results of class-agnostic 3D instance segmentation on ScanNetV2 [5] dataset.
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Figure 9. Additional visual results of class-agnostic 3D instance segmentation on ScanNet++ [48] dataset.
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Figure 10. Visual results of semantic instance segmentation on ScanNet200 [36] dataset. Given a text prompt, we can accurately locate
its position within the scene.



