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Figure 1. Visualization of semantic seed points transformed from
LMMs-extracted foreground mask. The seed points are colored
with blue. The left side represents the case before the mask shrink
operation, while the right side shows the result after applying mask
shrink. Mask shrink retains only the high-confidence core region
of the foreground mask.

1. The Visualization of Effectiveness of Mask
Shrink

Fig. 1 illustrates the impact of the mask shrink operation
on the accurate transmission of semantics. For ease of vi-
sualization, we have colored the transferred semantic seed
points blue. The left column represents directly transfer-
ring semantic masks generated by LMMs, where uncer-
tainty edge segmentation, coupled with the inherent one-
to-many nature of the pixel-to-point cloud, often results in
a significant number of background points being mistak-
enly classified as foreground. These pervasive noise exits
in seed points significantly hinder the subsequent genera-
tion of high-quality pseudo-labels. At the same time, we
observe that the noise is primarily concentrated at the edges
of the mask. Based on this finding, we design a mask shrink
strategy based on boundary constraints that only transfer the
central region of the foreground masks onto the point cloud,
eliminating edge semantic ambiguity and projection uncer-
tainty. After incorporating this module, the effect on the
seed points is shown on the right side of Fig. 1. It can be
seen that we finally retained accurate seed points.

γ on mask shrink. The core idea of mask shrink is to
filter out the potentially ambiguous edge parts of the fore-
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Figure 2. Visualization of the process of fitting bounding boxes
with dynamic cluster radii in DCPG. As iterations proceed,
the multi-scale neighborhood clustering mechanism can generate
bounding boxes that more completely encompass foreground in-
formation.

ground mask, retaining only its core area. During the mask
shrink process, we set a shrink factor γ to control the size of
the retained region. We qualitatively analyzed the γ values
in Fig. 3. As shown in the figure, when the γ value is too
high (e.g. 0.8 and 0.5), it generates a larger number of seed
points, but this can lead to significant edge noise. When the
γ value is too small (e.g. 0.1), the number of seed points is
significantly limited, which affects the fitting of subsequent
pseudo-labels. Therefore, we have chosen a more balanced
value of 0.3 for γ.

2. The Visualization of Effectiveness of DCPG
Fig. 2 demonstrates the pseudo-label fitting process of
DCPG under different clustering radii. From this example,
it can be seen that using a single fixed parameter for the
clustering radius r makes it difficult to fit the most appropri-
ate bounding box pseudo-labels. In this case, our DCPG dy-
namically assigns different cluster radii r to different seed
points, which is capable of capturing multi-scale foreground
information, thereby fitting higher-quality pseudo-labels. In
addition, by integrating the DS score with the NMS strategy,
we can eliminate the low-quality pseudo-labels effectively.
Ultimately, it is the high-quality pseudo-labels that remain
that provide the necessary support for the training of a high-
performing initial 3D detector.

1



𝜸 = 𝟎. 𝟖

𝜸 = 𝟎. 𝟏

𝜸 = 𝟎. 𝟏

𝜸 = 𝟎. 𝟑

𝜸 = 𝟎. 𝟑

𝜸 = 𝟎. 𝟓

𝜸 = 𝟎. 𝟓

𝜸 = 𝟎. 𝟖

Figure 3. The impact of γ on mask shrink. The seed points are colored with blue. When γ is too large, mask shrink still retains some
noise points that are not filtered out. When γ is too small, it results in an insufficient number of generated seed points, thereby affecting
the subsequent dynamic clustering pseudo-label generation.

Figure 4. Visualization of pseudo-label quality assessment. Bounding boxes with red color represent the fitted pseudo-labels, while blue
bounding boxes indicate ground truth boxes. SP3D can generate high-quality pseudo-labels close to the GT, but there is still significant
room for improvement in the quantity of generated pseudo-labels.

3. Discussion of Failure Cases

The core contribution of SP3D is to utilize cross-modal se-
mantic prompts to generate seed points, which are then used
to dynamically fit the 3D point cloud bounding boxes. Fi-
nally, low-quality pseudo-labels are removed based on the
DS score. Therefore, the quality and quantity of the seed
points significantly affect the performance of SP3D. On one
hand, the inherent prior bias of multimodal large models can
lead to semantic acquisition errors in images. For exam-
ple, ”Cyclist” may be misclassified as ”Pedestrian.” In such
cases, the noise interference is difficult to eliminate through
mask shrink operations. On the other hand, when the num-
ber of points in the point cloud scene is extremely sparse,
the number of seed points will also be relatively reduced.
This makes it difficult for DCPG to perform as expected,
and the fitted 3D bounding boxes may fail to correctly en-
close the foreground objects. Moreover, due to the lack of
corresponding semantic seed points, SP3D struggles to ac-
curately generate pseudo-labels for 3D point clouds outside

the camera’s field of view. A promising approach is to uti-
lize temporal information through tracking and other means
to fill in the missing camera perspectives.

4. Comparison with Various Annotation Rates
To more intuitively demonstrate the impact of the proposed
SP3D on the sparsely supervised algorithm, we take CoIn
[1] as an example and conduct a group of comparative
experiments under different annotation rates. Tab. 1 pro-
vides the variation in performance as annotation rates rang-
ing from 10% to 0.1%. The experimental results indicate
that the original sparsely-supervised 3D detector can signif-
icantly enhance performance upon integrating the proposed
SP3D. For example, at a 2% labeling rate, the CoIn inte-
grated with SP3D improved 3D AP by 15.41%, 14.42%,
and 14.84% on easy, moderate, and hard difficulty levels,
respectively. Also, this result represents an average im-
provement of 14.89% over the original detector. Besides,
our SP3D significantly boosts the sparsely-supervised 3D



Anno. Rate Method Car-3D @IoU 0.7
Easy Mod. Hard

100% CenterPoint 89.07 80.50 76.49

10% CoIn 85.95 71.80 62.64
+ SP3D 88.84 73.56 65.17

5% CoIn 81.64 67.48 58.32
+ SP3D 87.52 72.42 63.87

2% CoIn 72.03 54.82 43.77
+ SP3D 87.44 69.24 58.61

1% CoIn 70.39 51.31 41.31
+ SP3D 83.79 63.16 52.50

0.5% CoIn 66.77 47.68 38.38
+ SP3D 80.36 59.99 49.44

0.2% CoIn 45.47 31.20 23.52
+ SP3D 75.30 52.99 42.14

0.1% CoIn 6.84 4.65 3.61
+ SP3D 58.57 37.41 29.88

Table 1. Comparison with different annotation rates (10% →
0.1%). We report the results with 40 recall positions, under 0.7
IoU threshold.

detector’s performance even at very low annotation rates,
which achieves the 41.95% (36.92% higher than CoIn) av-
erage AP across different difficult levels under the annota-
tion rate of 0.1%. The experimental results indicate that the
performance of the original sparsely-supervised 3D detector
can improve significantly after loading the SP3D-initialized
model, even at low annotation rates.
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