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Figure 1. Visual results of the first group of ablation studies.
From left to right, we show composite image, foreground object
mask, the results of basic ControlNet, ControlNet with non-rotated
bounding box prior, ControlNet with rotated bounding prior, and
ground-truth.
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Figure 2. Visual results of the second group of ablation studies.
From left to right, we show composite image, foreground object
mask, the results of basic ControlNet, ControlNet with shadow
shape prior, and ground-truth.

In this supplementary section, we first present visual re-
sults from the ablation studies discussed in the main paper
in Section 1, which help to evaluate the contributions of
different components of our model. Section 2 shows ad-
ditional visual comparisons with baselines on DESOBAv2
dataset [8]. Furthermore, Section 3 presents the results on
real composite images together with the B-T scores [1] from
user study. Section 4 discusses shadow generation under
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Figure 3. Visual results of the third group of ablation studies. From
left to right, we show composite image, foreground object mask,
the results of ControlNet with rotated bounding box prior, Con-
trolNet with shadow shape prior, ControlNet with both priors, and
ground-truth.

different Lighting Directions and Viewpoints. Then, Sec-
tion 5 shows the comparison with generative composition
methods. Section 6 delves into the robustness of our model
through multiple random generations. In Section 7, we in-
troduce the details of our shape auto-encoder G, and ge-
ometry encoder E;. Section 8 presents results for different
values of the hyper-parameter K and N. Section 9 supple-
ments details on rotated bounding box regression. Finally,
we discuss some limitations of our method in Section 10.

1. Visualization of Ablation Studies

In this section, we provide visual results of the ablation
studies from Table 2 of the main paper. Specifically, the
visualizations are divided into three groups: The first group
corresponds to rows 1-3 of Table 2, exploring the impact
of different types of bounding box regression on shadow
quality. The second group, corresponding to rows 1 and 4
of Table 2, investigates the effect of incorporating shadow
shape embeddings classification on the results. The third
group, which corresponds to rows 3-5 of Table 2, discusses
how the combination of these techniques can complement
each other to improve the quality of generated shadows.
The results of the first group are shown in Figure 1. It
can be observed that using rotated bounding box prior pro-
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Figure 4. Visual comparison with state-of-the-art methods on DESOBAv?2 dataset. From left to right, we show composite image, foreground
object mask, results of ShadowGAN [18], AR-SG [7], SGRNet [4], DMASNet [13], SGDiffusion [8], our GPSDiffusion, and Ground-truth.
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Figure 5. Visual comparison with state-of-the-art methods on real composite images. From left to right, we show composite image,
foreground object mask, results of ShadowGAN [18], AR-SG [7], SGRNet [4], DMASNet [13], SGDiffusion [8], our GPSDiffusion, and

Ground-truth.

vides the most accurate shadow positioning. Additionally,
as shown in the second row, the model equipped with ro-
tated bounding box prior generates shadows with more pro-
nounced angles. In contrast, shadows generated with stan-
dard non-rotated bounding box prior tend to be parallel to
the stripes, demonstrating the effectiveness of the rotated
bounding box prior.

The results of the second group are illustrated in Fig-
ure 2. When using only the basic ControlNet, the generated
results are generally reasonable and capture the general ap-
pearance of the shadows. However, these results often lack
detailed shadow shapes, leading to less precise representa-
tions of complex shadow structures. In contrast, incorporat-
ing shadow shape prior significantly enhances the model’s
ability to predict more accurate and detailed shadow shapes.
This improvement highlights the effectiveness of integrat-
ing matched shape embeddings into the ControlNet frame-
work, as it provides more precise shadow representations,
aligning more closely with the ground-truth. This demon-
strates that the matched shape embeddings can help capture
finer shadow details and improve overall shadow quality.

The results of the third group are presented in Fig-
ure 3. While bounding box prior helps the model pre-
dict shadow regions with reasonable accuracy, the generated
shadows can be somewhat rough. Conversely, the shadow

shape prior improves the model’s ability to capture shadow
shapes, although it can cause some positional shifts. The
combination of two priors enhances both the precision of
shadow placement and the quality of shape details, demon-
strating that jointly using two priors provide more compre-
hensive geometry priors for the model.

2. More Visualization Results on DESOBAv2

Figure 4 shows more qualitative comparison results with
other methods on DESOBAv2 [8]. For shadow genera-
tion in various scenes, our method demonstrates signifi-
cant improvements in geometry details (e.g., location, scale,
shape), highlighting the effectiveness of using geometry pri-
ors in our method.

3. More Results on Real Composite Images

Figure 5 shows more qualitative comparison results with
other methods on real composite images from [4]. It can be
seen that our method generates the most reasonable and re-
alistic shadows. Due to the lack of ground-truth, we conduct
user study to quantitatively compare all methods on real
composite images: ShadowGAN [18], Mask-SG [5], AR-
SG [7], SGRNet [4], DMASNet [13] and SGDiffusion [8].

Specifically, for each real image, we generate results
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Figure 6. Visual comparison with state-of-the-art methods with different lighting directions and viewpoints. From left to right, we show
composite image, foreground object mask, results of ShadowGAN [18], AR-SG [7], SGRNet [4], DMASNet [13], SGDiffusion [8], our

GPSDiffusion, and Ground-truth.

Method B-T score 1
ShadowGAN [18] -1.061
Mask-SG [5] -1.712
AR-SG [7] -0.653
SGRNet [4] -0.109
DMASNet [13] 0.353
SGDiffusion [8] 0.652
Ours 2.529

Table 1. B-T scores of different methods evaluated on 100 real
composite images.

from all 7 methods and create 21 pairs by randomly select-
ing two results. We evaluated 100 real images, resulting in
a total of 2100 pairs. 50 users are invited to assess the pairs,
with each user selecting the more realistic shadow for the
foreground object in each pair. This leads to 105,000 pair-
wise results in total. We then calculate the scores for each
method based on the Bradley-Terry (B-T) model [1] using
the obtained pairwise results. The results reported in Table 1
show that our method achieves the highest score, indicating
that our method generates the most reasonable shadows and

aligns best with human visual perception.

4. Experiments with Different Lighting and
Viewing Directions

Figure 6 shows the visual comparisons between our GPS-
Diffusion and baselines under different lighting and view-
ing directions. Our method can generate realistic shadows
when the viewing direction is perpendicular to the lighting
direction (row 1) or parallel with the lighting direction (row
3). Even for the unusual bird-view (rows 2, 4, and 5), our
method can still generate visually realistic shadows, while
other methods struggle to produce satisfactory shadows, or
may not generate any shadows at all.

5. Comparison with Generative Image Compo-
sition Methods

Recently, due to the increasingly popularity of foundation
diffusion model, generative image composition [2, 6, 9—
12, 16] has attracted more and more attention. This task
aims to naturally insert given foreground objects into back-
ground images, which has certain overlap with shadow gen-
eration task. While these methods may incidentally gener-
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Figure 7. Visual comparison with generative composition methods on DESOBAv?2 dataset. From left to right, we show composite image,
foreground object mask, results of ObjectStitch [11], ControlCom [17], AnyDoor [2], our GPSDiffusion, and Ground-truth.

ate shadows with simple shapes for the inserted foreground
objects without specific training. However, the quality of
generated shadow is very low and the model has no ability
to generate complicated shadows. Moreover, the details of
foreground objects may be changed unexpectedly.

We choose open-sourced ObjectStitch [11], Control-
Com [17], and AnyDoor [2] as baselines for compari-
son. Although ObjectDrop [15] and TOB [14] discuss the
shadow issues, but they did not release code or model. For
these baselines, we take the bounding box enclosing the
composite foreground as the reference bounding box and
the cropped composite foreground as the reference object,
utilizing their released models.

The results of different methods are shown in Figure 7,
revealing that the shadows generated by these methods are
incomplete due to bounding box constraints or incompati-
ble with the geometry of foreground object. For those com-
plicated shadows, the baselines perform significantly worse
than our method. Besides, for the baseline methods, the de-
tailed information cannot be well preserved. For example,
the human faces are distorted and the clothes patterns are
changed in the results of [2, 11, 17]. Therefore, our method
has clear advantage over these methods for shadow genera-
tion.

6. Multiple Results of Our Method

Considering the stochastic property of diffusion model, we
display five randomly generated results using our method in
Figure 8.

Particularly, in the cases where the input image exhibits
prominent lighting direction (row 1, 2), which can be in-
ferred based on background object-shadow pairs, the model
adeptly captures the lighting information and generate shad-
ows in the proper directions. The consistency in shadow
directions across multiple results demonstrates the model’s
ability to handle lighting variations effectively. In the cases
without explicit lighting information or background object-
shadow pairs, the model estimates a reasonable range of
possible lighting directions and generates multiple plausi-
ble shadows (rows 3, 4). It is worth noting that this range
is learnt from the prior knowledge in the training set, thus
the generated shadows are very likely to be located near the
ground-truth shadows.

7. Details of Network Architecture

Shape auto-encoder Our shape auto-encoder consists
of 4 encoder layers and 4 decoder layers, making a
total of 8 layers. The encoder includes the follow-
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Figure 8. Visual results of our method using different random seeds. From left to right, we show composite image, foreground object mask,

five results randomly generated by our method, and ground-truth.
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Figure 9. The hyper-parameter analyses of matched shape embed-
ding number K and cluster number N on BOS test images from
DESOBAV2. The default values are indicated by dashed vertical
lines.

ing layers: conv(1,16), conv(16,32), conv(32,64) and
conv(64, 128), where each conv(cl, ¢2) represents a 3 x 3
Convolution-ReL.U layer with input and output channels c1
and c2, a stride of 2, and padding of 1. The decoder in-
cludes: deconv(128,64), deconv(64, 32), deconv(32,16)
and deconv(16, 1), where each deconv(cl, ¢2) represents
a 3 x 3 TransposeConvolution-ReLU layer with input and

output channels cl and ¢2, a stride of 2, padding of 1, and
output padding of 1. The final layer of the decoder uses a
Sigmoid activation function instead of ReLU.

Geometry encoder Our geometry encoder F, is based on
ResNet-34 [3] and features two specialized heads: the box
head and the shape head. The box head is designed for ro-
tated bounding box regression and consists of three 3 x 3
convolution layers, each followed by Instance Normaliza-
tion and ReLU activation functions. After these operations,
the output is subjected to adaptive average pooling, which
is then processed by a linear layer that generates five param-
eters corresponding to the bounding box. The shape head is
used for shadow shape embeddings classification, and mod-
ifies the final fully connected layer of the ResNet-34 to out-
put class scores based on the number of classes.

8. Hyper-parameter Analyses

Recall that we group all shadow shape embeddings into N
clusters and retrieve top-K matched shape embeddings to
be used for diffusion model. By default, we set N = 256
and K = 32. We explore the effect of using different V
and K based on four metrics: Global RMSE (GR), Local
RMSE (LR), Global BER (GB), and Local BER (LB). We
vary K in the range of [16, 32, 64, 128] and N in the range
of [128, 256, 512, 1024] respectively, while keeping the
other one fixed as the default value. Figure 9 presents the
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Figure 10. Visual results of failure cases produced by our GPSD-
iffusion. From left to right, we show composite image, foreground
object mask, our GPSDiffusion, and Ground-truth.

results of these experiments, which shows that our method
is relatively robust and generally outperforms the baselines
when setting the hyper-parameters in a reasonable range.

9. Details of Rotated Bounding Box Regression

We obtain the ground-truth rotated bounding boxes of fore-
ground objects and shadows using the built-in functions in
OpenC'V. Specifically, we merge the effective regions of
the foreground object mask and shadow mask, respectively.
Then, we calculate the minimum bounding rotated rectan-
gle using cv2.minAreaRect to obtain the five parameters
of (x,y,w,h,0) of the bounding box. This process yields
B, and By as described in Section 3.1 in the main paper, al-
lowing us to supervise the rotated bounding box regression
as in Eqn. (1) in the main paper.

10. Failure Cases

Our method generally produces reasonable and realistic
shadows, but the results can be less satisfactory in certain
complex scenes. Figure 10 shows some examples where
the results fall short. For instance, in row 1, our model
struggles to generate accurate shadows for non-upright hu-
man poses captured from top-down viewpoint. Addition-
ally, as shown in row 2, for the objects that are suspended,
if the camera viewpoint does not sufficiently convey the
suspension information, our model fails to learn the inter-
nal structure and generates shadows like those of solid ob-
jects.
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