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1. Additional Implementation Details
We perform multi-scale compensation across N = 4 scales.
We employ the keypoint-based motion flow estimator from
FOMM [11]. The multi-scale motion flows are estimated
at a size of 64 × 64. We use convolution layers to en-
code the motion flows into a latent motion flow space of
size 32× 32× 32 and set the multi-scale motion codebook
size to K = 1024 and dm = 32. We also use convolu-
tion layers to decode the quantized motion flow features
while adopting the motion flow updater in MRFA [12] as
our motion flow residual decoder. We employ the image
encoder and decoder architecture from VQGAN [2] and fur-
ther encode the multi-scale appearance features into a size
of 32 × 32 × 256. The multi-scale appearance codebook
size is set to T = 1024 and da = 256.

We follow the unsupervised training pipeline from
FOMM [11], where the source and driving frames are ex-
tracted from the same video, and our framework learns to
reconstruct the driving frame. For the training objective, we
use the perceptual loss from FOMM [11] along with the
L1 loss as the image reconstruction loss, and we set the
loss weights as λadv = 0.8, λ1 = 0.5, λrecon,m = 32
and β = 0.25. The entire framework is trained end-to-
end utilizing the Adam optimizer, with a learning rate set
to 8 × 10−5 and a batch size of 16 for 250K iterations on
four NVIDIA RTX 3090 GPUs.

2. More Details on Experiments
2.1. Additional Details on the Compared Methods
We evaluate the performance of the compared methods us-
ing their released pre-trained models, and we present the
training datasets used for each method in Tab. 1. All the
GAN-based methods [7, 8, 11, 12, 14] and our method
are trained on the VoxCeleb1 [10] training set, while the
diffusion-based methods AniPortrait [15] and Follow-Your-
Emoji (FYE) [9] are trained on larger-scale datasets, includ-
ing VFHQ [16], CelebV-HQ [18], HDTF [17], and their
own collected dataset [9].

2.2. More Experimental Results
2.2.1. Video Results
We present video results for the ablation study and state-of-
the-art comparisons on the project page1 to demonstrate the
effectiveness of our video generation approach.

1https://shaelynz.github.io/synergize-motion-appearance/
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Figure 1. User study results ranking the quality of videos gener-
ated by different methods.

2.2.2. More Comparison Results
Cross-identity Reenactment. In the absence of ground
truth for cross-identity reenactment, we conduct a user
study comparing our approach to recent state-of-the-art
methods, including a GAN-based model (MRFA [12]) and a
diffusion-based model (Follow-You-Emoji (FYE) [9]). We
randomly selected 10 source-driving pairs and asked 30 par-
ticipants to evaluate the generated videos based on appear-
ance realism, motion naturalness, and overall quality. The
results shown in Fig. 1 indicate that users prefer our method,
confirming its superiority.

Method Training Dataset FID ↓ CSIM ↑ ARD ↓
AniPortrait [15] VFHQ [16], CelebV-HQ [18] 66.61 0.7226 2.9146
FYE [9] HDTF [17], VFHQ [16], their collected dataset [9] 60.05 0.7558 3.0822

FOMM [11] VoxCeleb1 [10] 80.00 0.6010 1.8331
LIA [14] VoxCeleb1 [10] 72.55 0.6505 2.5404
DaGAN [8] VoxCeleb1 [10] 85.32 0.5743 2.0604
MCNet [7] VoxCeleb1 [10] 82.72 0.5618 1.6970
MRFA [12] VoxCeleb1 [10] 77.63 0.5962 1.5903
Ours VoxCeleb1 [10] 76.47 0.6142 1.6234

Table 1. Quantitative comparison for cross-identity reenactment
on VoxCeleb1 dataset. AniPortrait [15] and Follow-Your-Emoji
(FYE) [9] are trained on much larger-scale datasets and are not
suitable for a direct comparison.

We also present quantitative comparison results for
cross-identity reenactment in Tab. 1. We use FID [6] for im-
age quality evaluation, Average Rotation Distance (ARD)
for motion transfer evaluation following [12], and cosine
similarity (CSIM) for identity preservation following [5].
Diffusion-based AniPortrait [15] and Follow-Your-Emoji
(FYE) [9] are trained on much larger-scale datasets and
are excluded from the comparison. Our method generally
demonstrates the highest overall performance, confirming
its effectiveness. LIA [14] is slightly better in image qual-
ity and identity preservation, as it uses latent codes instead
of keypoints as the motion representation, which helps ap-
pearance preservation. However, its motion transfer quality
is much worse. We also provide a qualitative comparison

https://shaelynz.github.io/synergize-motion-appearance/
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Figure 2. Qualitative comparison with more state-of-the-art approaches for (a) same-identity reconstruction and (b) cross-identity reenact-
ment on VoxCeleb1 or examples from the corresponding papers or project pages for closed-source methods (i.e., OSFV [13], PECHead [3],
and MegaPortraits [1]). Our method better mimics the driving motion and preserves more facial details.

with LIA in Fig. 2 where our method mimics the driving
motion better. Although MRFA [12] can transfer motion
well, its output frame quality may be low and it may not pre-
serve source identity effectively. Although diffusion-based
methods [9, 15] can achieve even better image quality and
identity preservation performance, they struggle to transfer
motion faithfully, which leads to undesirable visual quality.

Comparison with more state-of-the-art approaches. We
additionally provide comparisons with more state-of-the-
art approaches, including an open-source method (i.e.,
LivePortrait [4]) and several closed-source methods (i.e.,
OSFV [13], PECHead [3], and MegaPortraits [1]). The
qualitative comparison in Fig. 2 highlights the advantages of
our method in the preservation of facial details and expres-
sion transfer. We also provide a quantitative comparison
with the open-source LivePortrait [4] in Tab. 2. Although
LivePortrait is trained on significantly larger datasets and is
unsuitable for a direct fair comparison, our method can still
outperform it on all metrics for same-identity reconstruc-
tion.

Inference speed. We evaluate the inference speed using
an NVIDIA RTX 3090 and provide the results in Tab. 3.
Our approach shows clear advantages upon recent state-of-
the-art methods [4, 9, 12, 15], indicating its potential for

Method # Training Same-identity Reconstruction Cross-identity Reenactment
Video Frames FID ↓ PSNR ↑ L1 ↓ LPIPS ↓ AKD ↓ AED ↓ FID ↓ CSIM ↑ ARD ↓

LivePortrait [4] 69M 48.11 22.94 0.0484 0.2213 1.5516 0.1602 75.95 0.7260 1.3497
Ours 4.3M 43.15 25.30 0.0355 0.1846 1.2039 0.1071 76.47 0.6142 1.6234

Table 2. Quantitative comparison with LivePortrait [4] on Vox-
Celeb1. LivePortrait, being trained on significantly larger data, is
unsuitable for a direct comparison.

MRFA [12] AniPortrait [15] FYE [9] LivePortrait [4] Ours

FLOPs ↓ 403.05G 9.18T 15.04T 1.31T 352.91G
FPS ↑ 12.41 0.36 0.39 11.28 15.13

Table 3. Inference speed comparison.

real-time performance.

2.2.3. Additional Ablation Study
Effect of the code allocation scheme. We propose a
novel code allocation scheme for motion and appearance
codebooks that assigns different codes to corresponding
scales. This allows certain codes to be shared across mul-
tiple scales, facilitating the transfer of information between
them. To assess the effect of our code allocation scheme, we
conduct an ablation study and present results in Tab. 4. We
compare with two alternative codebook splitting schemes:
sharing all codes across all scales and splitting the codes



Method FID ↓ PSNR ↑ L1 ↓ LPIPS ↓ AKD ↓ AED ↓
Sharing all codes 43.23 25.12 0.0359 0.1860 1.2124 0.1065
Splitting the codes equally 42.52 25.20 0.0358 0.1857 1.1893 0.1075
Code Allocation (Ours) 43.15 25.30 0.0355 0.1846 1.2039 0.1071

Table 4. Ablation study on the code allocation scheme.

Method # Params (M) FID ↓ PSNR ↑ L1 ↓ LPIPS ↓ AKD ↓ AED ↓
Baseline* 82.2 48.09 21.64 0.0549 0.2480 2.6798 0.2214
Ours 82.2 43.15 25.30 0.0355 0.1846 1.2039 0.1071

Table 5. Ablation study on the model design.

Number of Codes FID ↓ PSNR ↑ L1 ↓ LPIPS ↓ AKD ↓ AED ↓ FLOPs (G) ↓ FPS ↑ Memory (M) ↓
256 47.50 25.18 0.0358 0.1861 1.1970 0.1039 351.57 15.60 6411
512 46.62 25.11 0.0362 0.1877 1.2190 0.1072 352.01 15.47 6411
1024 (Ours) 43.15 25.30 0.0355 0.1846 1.2039 0.1071 352.91 15.13 6413

Table 6. Ablation study on the codebook size. We present the
results of different code numbers.

equally among the scales. As demonstrated in Tab. 4, our
code allocation scheme generally achieves the best overall
performance, confirming the superior performance of our
code allocation scheme.
Effect of the model design. To verify the source of our
performance improvement, we compare with a new “Base-
line*”, which has parameters comparable to our full model,
achieved by increasing the ResBlock channel numbers of
our image encoder and decoder. We present the results in
Tab. 5. Our method significantly improves upon “Base-
line*”. The clear performance gap further confirms that
the improvement comes from our model design rather than
the increased parameters, indicating the effectiveness of our
model design.
Codebook size. To assess how the codebook size affects
the generation speed and quality, we vary the number of
codes in the codebooks to achieve different codebook sizes
and present results in Tab. 6. Larger codebooks gener-
ally improve generation quality by providing sufficient ca-
pacity to learn diverse motion and appearance codes, with
only a slight decrease in speed/memory performance. A
small codebook of 256 also performs well, likely because
codes are retrieved more frequently during training, allow-
ing for better optimization within the same training itera-
tions. However, its image quality remains limited.

3. Limitation
A limitation of our method is the appearance leakage prob-
lem in cross-identity reenactment, where the face in the
generated video tends to have a shape similar to that of
the driving face rather than the source face. This issue
arises from the keypoint-based motion flow estimator that
we adopt to produce the initial coarse motion flow and the
driving keypoints for multi-scale motion codebook com-
pensation. Although this motion flow estimator is robust

to non-facial motion, such as hair and neck movement,
by learning unsupervised keypoints on talking heads, the
keypoints also inherently model facial shapes, which leads
to the entanglement of motion and shape. Thus, appear-
ance leakage is a common issue for keypoint-based meth-
ods. Our method can effectively alleviate this issue by
demonstrating better appearance preservation than other
state-of-the-art keypoint-based approaches. As evidenced
in Tab. 1, we achieve the highest CSIM score among these
approaches, excluding LIA [14], which uses latent codes
instead of keypoints for motion representation. This is-
sue can also be mitigated through relative motion trans-
fer [11], which is widely adopted by previous methods [7,
8, 12].
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