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1. Summary
In this appendix, we present a comprehensive analysis of
our approach from multiple perspectives:
• Performance Evaluation: We first showcase the perfor-

mance of the Tartan IMU model, supported by figures and
videos.

• Qualitative Analysis: We then analyze key design
choices, including heterogeneous pre-training, the com-
parison between local and global coordinate systems, and
the effectiveness of multi-head versus single-head archi-
tecture.

• Dataset and Model Details: Next, we provide an in-
depth overview of our diverse training datasets and the
foundation model’s architecture, including detailed spec-
ifications of the training data used in its development.

• Related Work: Finally, we extend the discussion on re-
lated work, providing additional context and insights.
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Fig. 1. Memory buffer ablation study. Our dynamic memory
buffer selection allows for faster adaptation than known baselines.

2. Online Adaptation Evaluation
Figure 1 demonstrates the effectiveness of our adaptive se-
lection strategy in improving real-time adaptation perfor-
mance. While the baseline model performs well without
adaptive selection, our approach significantly enhances both

*Corresponding author. †Equal contribution with alphabetical order.

training speed and accuracy while utilizing only 75% of the
available data. These results emphasize the critical role of
maintaining a compact yet diverse dataset in achieving op-
timal performance. To further validate the performance of
our online adaptation pipeline, we conduct an additional ex-
periment on a circle-like trajectory (see Figure 2). From left
to right, it is evident that our model can provide more accu-
rate trajectory predictions within 90 seconds.

3. More Ablation Study
In this section, we did more experiments to show the effec-
tiveness of our Tartan IMU model including heterogeneous
pre-training, coordinate selection, and multi-head design.

3.1. The Discussion of Heterogeneous Pretraining
Heterogeneity, as previously defined, encompasses the
varied characteristics and formats of data from different
sources or platforms. Previous results indicate that train-
ing on a diverse range of robotic data significantly enhances
model performance, emphasizing the critical role of large-
scale, high-quality, and heterogeneous datasets in improv-
ing the generalization capabilities of the IMU model.

To further demonstrate the effectiveness of our hetero-
geneous pretraining strategy, we provide a qualitative com-
parison of results. As illustrated in Figure 3, the model
trained on a heterogeneous dataset—including IMU data
from both wheeled vehicles and quadruped robots (left col-
umn)—achieves significantly higher position estimation ac-
curacy than the model trained on a single motion pattern
(right column). This trajectory analysis highlights the ad-
vantages of heterogeneous pretraining, offering compelling
evidence of its effectiveness in enhancing pose estimation.

3.2. The Effectiveness of Coordinate Selection
As previously discussed, our approach estimates position by
regressing velocity within a local coordinate system. Com-
pared to directly predicting absolute position in a global
frame, this velocity-based method mitigates the risk of over-
fitting to specific trajectories. This design enhances the
model’s generalization ability and facilitates more robust
feature learning.
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Fig. 2. Performance of Online Adaptation on Unseen Trajectory. The Tartan IMU model progressively learns unseen circular patterns
through incremental training data. It can be seen that our model can learn new motion patterns within 90 seconds.

To illustrate the impact of our approach, we present a
visual comparison of trajectory predictions using different
regression targets, as shown in Figure 4. Predicting ve-
locity within a local coordinate system consistently yields
more accurate trajectory estimates. In contrast, while global
position predictions preserve relative trajectory scales, they
exhibit significant estimation errors. These results confirm
the effectiveness of our chosen regression target—velocity
in local coordinates—demonstrating its advantages across
different coordinate frameworks.

3.3. The Effectiveness of Multi-head Design
Our approach employs distinct regression heads to pre-
dict velocities specific to different robotic platforms. As
shown in Figure 5, using a single, coupled prediction head
for both wheeled and quadruped robots leads to a notice-
able increase in absolute trajectory error (ATE) over time
(Right). In contrast, decoupling velocity predictions into
separate regression heads significantly improves trajectory
accuracy. These results highlight the effectiveness of our
robot-decoupled multi-head design, which reduces interfer-
ence between distinct motion patterns and enhances adapt-
ability across diverse robotic platforms.

4. Dataset and Implementation Details
4.1. Training Dataset
As detailed in Tab. 1, we trained the Tartan IMU model on
a large-scale, heterogeneous dataset comprising over 100
hours of real-world IMU data. Those datasets encompasses

a diverse mix of autonomous driving and urban navigation
behaviors from 10 distinct robotic platforms with diverse
dynamics. These platforms span multiple categories, in-
cluding custom-built all-terrain vehicles, quadruped robots,
handheld human-operated devices, and unmanned aerial ve-
hicles.

The dataset features trajectories with a broad range of
dynamic behaviors and top speeds, ranging from 1.0 to 15
m/s, across varied operational environments. These envi-
ronments include office buildings, suburban areas, univer-
sity campuses, and high-speed indoor racing settings. All
data were sourced from publicly available datasets or con-
tributed by researchers from previous projects.

4.2. Data Augmentation
Data augmentation is a widely used technique to increase
data diversity and mitigate overfitting. Given that different
IMU devices exhibit varying levels of Gaussian white noise
and bias, we introduce randomized noise perturbations dur-
ing training to enhance adaptability across diverse IMU
hardware. Specifically, we randomly superimpose Gaussian
white noise and bias onto each input sample. The accelera-
tion and gyroscope biases are sampled from a uniform dis-
tribution as a 1× 6 vector, while two sets of Gaussian noise
with 10 × 200 × 3 are applied to each input sample of size
10× 200× 6.

We implement the model using PyTorch [16] and train
it with the Adam optimizer, starting with an initial learning
rate of 0.0001. Following the training strategy in [5], we
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Fig. 3. Qualitative Results of Heterogeneous Pretraining. The model on the left, pretrained on a diverse dataset incorporating IMU data
from both wheeled vehicles and quadruped robots, achieves significantly higher position estimation accuracy than the model on the right,
which was trained on a single motion pattern. This trajectory comparison underscores the advantages of our heterogeneous pretraining
approach in enhancing model performance.
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Fig. 4. Qualitative Results of Different Regression Targets (Different Coordinate Systems). The left side illustrates velocity estima-
tion within a local coordinate system, while the right side depicts direct global position prediction. Estimating local velocity results in
significantly more accurate trajectory predictions.

first use MSE loss until convergence, then switch to neg-
ative log-likelihood (NLL) loss for further training. The
model requires approximately 30 hours of training on an
NVIDIA 4090 GPU, with the model achieving the lowest

validation loss selected for testing.

4.3. Implementation Details.
For network input, we extract samples from each data se-
quence using a sliding window at a fixed sampling fre-
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Fig. 5. Qualitative Results of Multi-head Design. The left side illustrates the robot-decoupled multi-head design, while the right side
represents the coupled single head architecture. The predictions based on multi-head yield much better trajectory prediction results.

Dataset Platform Speed Frequency Total Hrs. Hrs. Used Environment

1 SubT-MRS [24] QR/UGV/Handheld/UAV 2m/s 200 Hz 500h 80h In/Outdoors/Urban

2 IDOL [19] Handheld 1.4m/s 200 Hz 20h 10h In/Outdoors
3 RNIN-VIO [5] Handheld 1.2m/s 100 Hz 7h 7h In/Outdoors

4 BlackBird [1] UAV 7m/s 100 Hz 10h 5h Indoors
5 UZH-FPV Drone Racing [6] UAV 12.8m/s 500 Hz 1h 0.5h Indoors

Total - 538h 102.5h

Table 1. The TartanIMU training dataset contains over 100 hours of IMU data in challenging indoor, outdoor, and off-road environ-
ments across 10 different robots of varying sizes, speeds, and capabilities. ATV: All-terrain vehicle. Quadruped(Legged) robot. QR:
Quadruped(Legged) robot. UAV: Unmanned Aerial Vehicle.

quency. Each window includes N IMU samples, resulting
in an input dimension is N × 6. To standardize the input,
we linearly interpolate all sequences to 200 Hz. With a win-
dow size of 200 (represents 1.0s), and an LSTM with 10
time steps, each input sample has a shape of 10× 200× 6.
The supervision signal is the relative position of the window
within the body coordinate system over the window. We
implement the model using Pytorch [16] and train it with
the Adam optimizer at an initial learning rate of 0.0001.
Following the training strategy in [5], we first use MSE
loss to train until convergence, and then switch to negative
log-likelihood (NLL) loss until convergence. Training re-

quires approximately 30 hours on an NVIDIA 4090 GPU.
The model yielding the lowest validation loss is selected for
testing.

4.4. Metrics

Following previous methods [2, 5, 19], we evaluate our
method on Absolute Trajectory Error (ATE), Time-Relative
Trajectory Error(T-RTE), and Distance Relative Trajectory
Error (D-RTE) metrics to demonstrate the effectiveness.



5. More Related Work
5.1. Existing Foundation Models
Recent large language models (LLMs) like GPT and
LLaMA have excelled in various domains but struggle with
non-text data. Vision-language models (VLMs) address this
by integrating multiple modalities, including images and
videos, to enhance data understanding. As LLMs evolve,
foundational models for vision and language have emerged,
with some focusing on open-vocabulary VLMs for state
estimation in robotics [8, 10, 11, 14, 17]. Models like
LEXIS [10] and FM-Loc [14] utilize CLIP features for
indoor localization and mapping tasks, enhancing room-
level scene recognition. However, these models do not
fully explore the broader applicability of foundational fea-
tures. AnyLoc [11] integrates dense foundational features
for state-of-the-art place recognition, while FoundLoc [8]
combines AnyLoc with Visual-Inertial Odometry (VIO)
for GNSS-denied environments, demonstrating VLM ef-
fectiveness on UAVs and embedded hardware. ViNT [17]
adapts general-purpose pre-trained models for vision-based
robotic navigation, outperforming specialized models.

Despite these advances, there remains a gap in the use
of IMU data for robotics state estimation within existing
foundational models, and no benchmark currently supports
the development and evaluation of such models. This paper
addresses this gap by introducing a foundation model that
effectively incorporates IMU data for state estimation.

5.2. IMU Dataset in Different Robot Platforms
In the field of vehicle navigation, the KITTI dataset [7]
serves as a widely adopted benchmark. The sensors are
rigidly mounted on the car chassis and a high-precision
GPS/IMU system, providing ground truth with 100 Hz
inertial data and 10 Hz GPS/images. Besides, sev-
eral large-scale IMU datasets like Rellis 3D [9], SubT-
MRS [24], MADMAX [13], M2DGR [23], TartanDrive
1.0/2.0 [18, 21] support vehicle localization across diverse
indoor/outdoor scenarios and motion patterns.

For quadrupedal robots, datasets like SubT-MRS [24],
LegKILO [15], and ETH-Legged [20] capture legged robot
motion across different environments. Pedestrian datasets,
such as OxIOD [4] and SIMD [12], focus on human motion
patterns. Drones are represented by datasets like EuRoC
MAV [3], Tartanair [22], BlackBird [1], and UZH-FPV [6]
for state estimation in flight.

While these datasets span multiple robotic platforms,
they often prioritize visual or LiDAR-based navigation,
overshadowing IMU contributions. This work aims to repo-
sition IMUs as critical for state estimation, urging the com-
munity to reassess their potential alongside other sensors.
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