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iSegMan: Interactive Segment-and-Manipulate 3D Gaussians

Appendix

1. Details of Experimental Settings001

1.1. Dataset Description002

The datasets used in the experiments are described below:003

• Mip-NeRF 360 [1]. This dataset contains 9 scenes, 5004
outdoors and 4 indoors, each of which contains a central005
object or area with a detailed background.006

• Instruct-N2N [7]. This dataset consists of 6 scenes, each007
of which provides manually captured multi-view natural008
images, camera poses, and camera paths.009

• LERF [9]. This dataset consists of 9 scenes, each of010
which provides multi-view images, camera poses, and011
camera paths.012

• LLFF [11]. This dataset consists of both renderings and013
real images of natural scenes. The real images are 24014
scenes captured by a handheld cellphone.015

• NVOS [15]. The source data used in this dataset comes016
from the LLFF dataset, which contains 7 scenes and anno-017
tated segmentation masks with 8 instances (two instances018
are annotated in the “horn” scene). This dataset provides019
a 2D mask ground-truth of the target viewpoints.020

• SPIn-NeRF [12]. This dataset contains segmentation an-021
notations of 10 scenes, each of which provides 100 multi-022
view images and corresponding camera poses. For each023
scene, the first 40 images are the ground-truth captures024
without the unwanted object, and the rest of the images025
are the training views with the object present.026

1.2. Implementation Details027

All of the original 3D Gaussians in our experiments are028
trained utilizing the method presented in [8], with raw data029
from publicly available datasets, and rendered during train-030
ing using the highly optimized renderer proposed in [8].031
For the epipolar-guided interaction propagation, the default032
feature extractor for interaction matching employs DINO-033
small [3] with a patch size of 16. To improve the efficiency,034
we perform a 2× downsampling operation on the input im-035
age of the feature extractor. For the visibility-based Gaus-036
sian voting, we utilize SAM [10] equipped with the ViT-037
Huge [5] as the interactive segmenter. The predetermined038
threshold of normalized votes is set to 0.8. For semantic039
editing, we employ Instruct-Pix2Pix [2] as the image editor040
and train each editing instruction for 1500-2000 steps. We041
prohibit Gaussian densification during the editing process.042
Note that ablation studies are performed on the SPIn-NeRF043
dataset by default. We use PyTorch for implementation and044
a single 32GB NVIDIA V100 GPU for all experiments.045

2. Evaluation Details of Semantic Editing 046

User Study. The detailed evaluation criteria of user study 047
are presented in Tab. A. We ask the participants to score 048
from three dimensions: accuracy of instruction comprehen- 049
sion, rationality of editing results, and quality of editing re- 050
sults. The scoring criteria for each dimension are quantified 051
on a scale of 1 to 5 inclusive, with no allowance for deci- 052
mal increments. Finally, we take the average of the scores 053
of three dimensions as the user study score and provide the 054
95% confidence interval. The user study results reported are 055
the average scores of a total of 30 participants. 056
CLIP Directional Similarity. CLIP directional similar- 057
ity [6] refers to the cosine similarity between the change 058
of the images and captions in the CLIP [14] embedding 059
space during the editing process. CLIP directional similar- 060
ity measures the consistency of the change between images 061
and captions. The higher the value, the more the edited im- 062
age matches the editing instructions, and vice versa. The 063
calculation is presented in Eq. (A). 064

∆I = EI(Ie
v)− EI(Iv),

∆T = ET (te)− ET (tori),

CLIPdir =
∆I ·∆T

|∆I||∆T |
,

(A) 065

where EI and ET represent the image and text encoders of 066
CLIP, respectively. Ie

v represents the image rendered from 067
the edited scene, Iv represents the image rendered from the 068
original scene. te represents the caption of the edited image, 069
tori represents the original image caption. v represents the 070
rendering viewpoint, and we compute the average metric 071
over all viewpoints for each scene. 072

3. Results of Ablation Study 073

Epipolar Constraint. To verify the effectiveness of the 074
epipolar constraint, we remove it and evaluate the accuracy 075
and execution time of the region selection, cf. Tab. B. The 076
results show that removing the epipolar constraint does pro- 077
duce incorrectly matched interactions due to the noise in- 078
troduced by significantly increasing the search space, thus 079
reducing accuracy. 080
Iterative Inspection Mechanism. To verify the effective- 081
ness of the iterative inspection mechanism, we also remove 082
it and evaluate the accuracy and execution time, cf. Tab. C. 083
Since the iterative inspection mechanism only works when 084
the target region is occluded or out of view, we select four 085
scenes with such situations for evaluation, namely “bicy- 086
cle” and “counter” from the Mip-NeRF 360 [1] dataset, and 087
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Dimension #Point Description

Accuracy

1 Very poor, the system barely understands the instructions and does not match the user’s intention
at all.

2 Rather poor, the understanding of the instructions is not very accurate, and there are irrelevant
areas that are obviously changed.

3 Acceptable, the understanding of the instructions is basically correct, and there are basically no
irrelevant areas that are obviously changed.

4 Fairly good, the understanding of the instructions is relatively accurate, and there are basically
no irrelevant areas that have been changed, but there is still room for improvement.

5 Very good, the system understands the instructions very accurately and there are no obvious
shortcomings.

Rationality

1 Very poor, the result is very unreasonable, there is severe distortion or the original features are
completely lost.

2 Rather poor, the result is relatively unreasonable, the original features are rarely retained, and
irrelevant areas are significantly distorted.

3 Acceptable, the result is basically reasonable, the original features are basically identifiable, and
the distortion in irrelevant areas is not obvious.

4 Fairly good, the result is reasonable, the original features can be accurately identified, and there
is a small amount of negligible distortion.

5 Very good, the result is clearly reasonable, the original features are fully identifiable and there is
no obvious distortion.

Quality

1 Very poor, texture detail is very blurred, color distribution anomalous.
2 Rather poor, texture detail is blurred, color distribution is sometimes anomalous.
3 Acceptable, texture detail is slightly blurred, color distribution is basically normal.
4 Fairly good, texture detail is relatively clear, color distribution is normal.
5 Very good, texture detail is very clear, color distribution is very reasonable.

Table A. The detailed evaluation criteria of the user study.

Epipolar
Constraint

mIoU
(%)

mAcc
(%)

Execution Time
Feature Segment

✗ 88.7 98.5 52s 7s
✓ 92.4 99.1 52s 6s

Table B. Ablation on epipolar constraint.

IIM mIoU
(%)

mAcc
(%)

Execution Time
Feature Segment

✗ 83.9 96.4 46s 5s
✓ 90.1 98.2 46s 6s

Table C. Ablation on iterative inspection mechanism.

“bouquet” and “figurines” from the LERF [9] dataset. We088
report the average results of four scenes and adopt a uni-089
form sampling rate of 25% for each scene to maintain effi-090
ciency. The results indicate that removing the iterative in-091
spection mechanism introduces noise matching interactions092
that cause incorrect 2D segmentations to participate in the093
voting, resulting in a decrease in accuracy.094
Feature Extractor. To test the generalizability of the095

Feature Extractor mIoU(%) mAcc(%)
DINO [3] 92.4 99.1

DINOv2 [13] 92.3 99.1
MoCov3 [4] 92.0 98.9

Table D. Ablation on feature extractor.

epipolar-guided interaction propagation, we employ differ- 096
ent feature extractors for the ablation, cf. Tab. D. We em- 097
ploy DINO [3], DINOv2 [13] and MoCov3 [4] respectively 098
for evaluation, and the results indicate that the proposed 099
method is robust to the feature extractor. 100

4. Preliminary: 3D Gaussian Splatting 101

3DGS (Gaussian Splatting) [8] models a 3D scene as a 102
set of 3D Gaussian primitives, which are initialized from 103
the sparse point clouds obtained by Structure from Mo- 104
tion (SfM) [16]. Each Gaussian Θi is parameterized by a 105
center point x and a covariance matrix Σi, which represents 106
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“ Make him look like a painting.” 

“ Make him look like Van Gogh.” 

“ Turn him into an old lady.” 

“ Turn him into a werewolf.” “ Make his hair lush.” (Scaling)

“ Make the old lady laugh.” 

“ Turn him into a black man.”

“ Turn him into a zombie.” “ Make him look scary.” 

“ Make his hair purple.” (Colorize)

“ Make his shirt green.” (Colorize)

“ Make his hair red.” (Colorize)

“ Turn him into Lord Voldemort.” “ Make him look shocked.” 

“ Turn him into Tolkien Elf.” “ Enlarge his ears.” (Scaling)

Figure A. Additional visualization results. Orange arrows indicate interactive 3D segmentation, and blue arrows indicate semantic editing.

the distribution as:107

Θi(x) = e−
1
2x

TΣ−1
i x. (B)108

To derive a physically meaningful covariance matrix that109
is necessarily positive semi-definite, the subsequent equiva-110
lent representation is employed:111

Σi = RiSiS
T
i R

T
i , (C)112

where the covariance matrix Σi is decomposed into a scal-113
ing factor Si and a rotation quaternion Ri. Moreover, an114
opacity σi is employed to control the influence of each115
Gaussian when blending across the scene, and a color ci116
is applied to represent its appearance.117

To summarize, each 3D Gaussian is parameterized by a118
set of attributes: position µi ∈ R3, scaling factor Si ∈ R3,119
rotation quaternion Ri ∈ R4, opacity σi ∈ R, and color120
ci ∈ Rk (where k indicates the degrees of freedom). Each121
3D scene can be formally represented by a 3D Gaussian122
set: Θ = {(µi,Si,Ri, σi, ci)}Ni=1, where N indicates the123
number of 3D Gaussians. These 3D Gaussians can be ef-124
fectively rendered to compute the color C by blending N125
ordered Gaussians overlapping the pixel:126

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), (D)127

where αi is calculated by evaluating Θi with Eq. (B) multi-128
plied by its opacity σi.129

5. Additional Visualization Results130

We present additional visualization results, cf. Fig. A.131
For semantic editing, we provide text editing instructions,132

while for other manipulation requirements, we provide re- 133
quirement descriptions and specify the tools to be invoked 134
(marked in blue). The extensive and impressive visualiza- 135
tion results demonstrate that our iSegMan provides precise 136
region control and excellent manipulation performance, sig- 137
nificantly enhancing the controllability, flexibility and prac- 138
ticality of existing 3D manipulation systems. 139
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Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,199
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al.200
Dinov2: Learning robust visual features without supervision.201
arXiv preprint arXiv:2304.07193, 2023. 2202

[14] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya203
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,204
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning205
transferable visual models from natural language supervi-206
sion. In International conference on machine learning, pages207
8748–8763. PMLR, 2021. 1208

[15] Zhongzheng Ren, Aseem Agarwala, Bryan Russell, Alexan-209
der G Schwing, and Oliver Wang. Neural volumetric ob-210
ject selection. In Proceedings of the IEEE/CVF Conference211
on Computer Vision and Pattern Recognition, pages 6133–212
6142, 2022. 1213

[16] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo214
tourism: exploring photo collections in 3d. In ACM siggraph215
2006 papers, pages 835–846. 2006. 2216

4


	. Details of Experimental Settings
	. Dataset Description
	. Implementation Details

	. Evaluation Details of Semantic Editing
	. Results of Ablation Study
	. Preliminary: 3D Gaussian Splatting
	. Additional Visualization Results

