CVPR
#3413

001

002

003

004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

027

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045

CVPR 2025 Submission #3413. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

iSegMan: Interactive Segment-and-Manipulate 3D Gaussians

Appendix

1. Details of Experimental Settings
1.1. Dataset Description

The datasets used in the experiments are described below:

* Mip-NeRF 360 [1]. This dataset contains 9 scenes, 5
outdoors and 4 indoors, each of which contains a central
object or area with a detailed background.

¢ Instruct-N2N [7]. This dataset consists of 6 scenes, each
of which provides manually captured multi-view natural
images, camera poses, and camera paths.

e LERF [9]. This dataset consists of 9 scenes, each of
which provides multi-view images, camera poses, and
camera paths.

e LLFF [11]. This dataset consists of both renderings and
real images of natural scenes. The real images are 24
scenes captured by a handheld cellphone.

e NVOS [15]. The source data used in this dataset comes
from the LLFF dataset, which contains 7 scenes and anno-
tated segmentation masks with 8 instances (two instances
are annotated in the “horn” scene). This dataset provides
a 2D mask ground-truth of the target viewpoints.

* SPIn-NeRF [12]. This dataset contains segmentation an-
notations of 10 scenes, each of which provides 100 multi-
view images and corresponding camera poses. For each
scene, the first 40 images are the ground-truth captures
without the unwanted object, and the rest of the images
are the training views with the object present.

1.2. Implementation Details

All of the original 3D Gaussians in our experiments are
trained utilizing the method presented in [8], with raw data
from publicly available datasets, and rendered during train-
ing using the highly optimized renderer proposed in [8].
For the epipolar-guided interaction propagation, the default
feature extractor for interaction matching employs DINO-
small [3] with a patch size of 16. To improve the efficiency,
we perform a 2x downsampling operation on the input im-
age of the feature extractor. For the visibility-based Gaus-
sian voting, we utilize SAM [10] equipped with the ViT-
Huge [5] as the interactive segmenter. The predetermined
threshold of normalized votes is set to 0.8. For semantic
editing, we employ Instruct-Pix2Pix [2] as the image editor
and train each editing instruction for 1500-2000 steps. We
prohibit Gaussian densification during the editing process.
Note that ablation studies are performed on the SPIn-NeRF
dataset by default. We use PyTorch for implementation and
a single 32GB NVIDIA V100 GPU for all experiments.

2. Evaluation Details of Semantic Editing

User Study. The detailed evaluation criteria of user study
are presented in Tab. A. We ask the participants to score
from three dimensions: accuracy of instruction comprehen-
sion, rationality of editing results, and quality of editing re-
sults. The scoring criteria for each dimension are quantified
on a scale of 1 to 5 inclusive, with no allowance for deci-
mal increments. Finally, we take the average of the scores
of three dimensions as the user study score and provide the
95% confidence interval. The user study results reported are
the average scores of a total of 30 participants.

CLIP Directional Similarity. CLIP directional similar-
ity [6] refers to the cosine similarity between the change
of the images and captions in the CLIP [14] embedding
space during the editing process. CLIP directional similar-
ity measures the consistency of the change between images
and captions. The higher the value, the more the edited im-
age matches the editing instructions, and vice versa. The
calculation is presented in Eq. (A).

AI = E((I5) — Ei(L,),
AT = Er(t.) = Br(tor:),
AI - AT
|AT||AT)’

(A)
CLIP;;, =

where E; and Ep represent the image and text encoders of
CLIP, respectively. Z¢ represents the image rendered from
the edited scene, Z,, represents the image rendered from the
original scene. t. represents the caption of the edited image,
tor; represents the original image caption. v represents the
rendering viewpoint, and we compute the average metric
over all viewpoints for each scene.

3. Results of Ablation Study

Epipolar Constraint. To verify the effectiveness of the
epipolar constraint, we remove it and evaluate the accuracy
and execution time of the region selection, cf. Tab. B. The
results show that removing the epipolar constraint does pro-
duce incorrectly matched interactions due to the noise in-
troduced by significantly increasing the search space, thus
reducing accuracy.

Iterative Inspection Mechanism. To verify the effective-
ness of the iterative inspection mechanism, we also remove
it and evaluate the accuracy and execution time, cf. Tab. C.
Since the iterative inspection mechanism only works when
the target region is occluded or out of view, we select four
scenes with such situations for evaluation, namely “bicy-
cle” and “counter” from the Mip-NeRF 360 [ 1] dataset, and
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Dimension | #Point | Description
1 Very poor, the system barely understands the instructions and does not match the user’s intention
at all.
2 Rather poor, the understanding of the instructions is not very accurate, and there are irrelevant
areas that are obviously changed.
Accuracy 3 Acceptable, the understanding of the instructions is basically correct, and there are basically no
irrelevant areas that are obviously changed.
4 Fairly good, the understanding of the instructions is relatively accurate, and there are basically
no irrelevant areas that have been changed, but there is still room for improvement.
5 Very good, the system understands the instructions very accurately and there are no obvious
shortcomings.
1 Very poor, the result is very unreasonable, there is severe distortion or the original features are
completely lost.
2 Rather poor, the result is relatively unreasonable, the original features are rarely retained, and

irrelevant areas are significantly distorted.

Rationality 3

Acceptable, the result is basically reasonable, the original features are basically identifiable, and
the distortion in irrelevant areas is not obvious.

4 Fairly good, the result is reasonable, the original features can be accurately identified, and there
is a small amount of negligible distortion.
5 Very good, the result is clearly reasonable, the original features are fully identifiable and there is
no obvious distortion.
1 Very poor, texture detail is very blurred, color distribution anomalous.
2 Rather poor, texture detail is blurred, color distribution is sometimes anomalous.
Quality 3 Acceptable, texture detail is slightly blurred, color distribution is basically normal.
4 Fairly good, texture detail is relatively clear, color distribution is normal.
5 Very good, texture detail is very clear, color distribution is very reasonable.
Table A. The detailed evaluation criteria of the user study.
Epipolar mloU mAcc Execution Time Feature Extractor mloU(%) mAcc(%)
Constraint (%) (%) Feature Segment DINO [3] 92.4 99.1
X 88.7 98.5 52s Ts DINOv2 [13] 92.3 99.1
v 92.4 99.1 52s 6s MoCov3 [4] 92.0 98.9

Table B. Ablation on epipolar constraint.

M mloU mAcc Execution Time
(%) (%) Feature Segment
X 83.9 96.4 46s Ss
v 90.1 98.2 46s 6s

Table C. Ablation on iterative inspection mechanism.

“bouquet” and “figurines” from the LERF [9] dataset. We
report the average results of four scenes and adopt a uni-
form sampling rate of 25% for each scene to maintain effi-
ciency. The results indicate that removing the iterative in-
spection mechanism introduces noise matching interactions
that cause incorrect 2D segmentations to participate in the
voting, resulting in a decrease in accuracy.

Feature Extractor. To test the generalizability of the

Table D. Ablation on feature extractor.

epipolar-guided interaction propagation, we employ differ-
ent feature extractors for the ablation, ¢f. Tab. D. We em-
ploy DINO [3], DINOv2 [13] and MoCov3 [4] respectively
for evaluation, and the results indicate that the proposed
method is robust to the feature extractor.

4. Preliminary: 3D Gaussian Splatting

3DGS (Gaussian Splatting) [8] models a 3D scene as a
set of 3D Gaussian primitives, which are initialized from
the sparse point clouds obtained by Structure from Mo-
tion (SfM) [16]. Each Gaussian O; is parameterized by a
center point x and a covariance matrix 3;, which represents
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“ Turn him into an old lady.”

“ Turn him into a black man.”

“ Make the old lady laugh.”

“ Turn him into Lord Voldemort.” “ Make him look shocked.”

I3 l

“ Make his hair red.” (Colorize)

$
/)

Figure A. Additional visualization results. Orange arrows indicate interactive 3D segmentation, and blue arrows indicate semantic editing.

the distribution as:
Oi(z) = e 22 B ', (B)

To derive a physically meaningful covariance matrix that
is necessarily positive semi-definite, the subsequent equiva-
lent representation is employed:

3, = R;S;STRY, ©

where the covariance matrix X; is decomposed into a scal-
ing factor S; and a rotation quaternion R;. Moreover, an
opacity o; is employed to control the influence of each
Gaussian when blending across the scene, and a color ¢;
is applied to represent its appearance.

To summarize, each 3D Gaussian is parameterized by a
set of attributes: position p; € R3, scaling factor S; € R3,
rotation quaternion R; € R*, opacity o; € R, and color
c¢; € RF (where k indicates the degrees of freedom). Each
3D scene can be formally represented by a 3D Gaussian
set: © = {(p;, S, Ri,04,¢;)}Y,, where N indicates the
number of 3D Gaussians. These 3D Gaussians can be ef-
fectively rendered to compute the color C' by blending N
ordered Gaussians overlapping the pixel:

i—1
C=> cia; [[(1-ay), (D)
iEN Jj=1

where «; is calculated by evaluating ©; with Eq. (B) multi-
plied by its opacity o;.

5. Additional Visualization Results

We present additional visualization results, cf. Fig. A.
For semantic editing, we provide text editing instructions,

while for other manipulation requirements, we provide re-
quirement descriptions and specify the tools to be invoked
(marked in blue). The extensive and impressive visualiza-
tion results demonstrate that our iSegMan provides precise
region control and excellent manipulation performance, sig-
nificantly enhancing the controllability, flexibility and prac-
ticality of existing 3D manipulation systems.
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