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1. Detailed Experimental Setup001

Datasets. For training, we used the AV Speech [1]dataset002
(filtered to 662 hours) and the VFHQ [7]dataset (filtered003
to 2 hours) for pretraining, along with additional talking-004
head video data collected from the internet (32 hours) for005
supervised fine-tuning (SFT). For validation, we used the006
HDTF [8] dataset (filtered to 0.83 hours) , RAVDESS [3]007
dataset (filtered to 0.55 hours, public high-definition indoor008
talking scene dataset with rich emotions) and supplemen-009
tary internet-sourced data (0.49 hours). Note that the sup-010
plementary internet-sourced data is only used for qualita-011
tive comparison. To ensure data quality for both training012
and validation, we first applied the Mediapipe [4] face de-013
tection tool to detect face regions, filtering out instances014
where facial movement exceeded 50%. We further refined015
the data using Sync-C and Sync-D to exclude samples with016
low lip-sync scores.017

Metrics. The evaluation metrics for the portrait image an-018
imation approach include Fréchet Inception Distance [2]019
(FID), Fréchet Video Distance [6] (FVD), Synchronization-020
C [5] (Sync-C), and Synchronization-D [5] (Sync-D) .021
FID and FVD assess the similarity between generated im-022
ages/videos and real data, with lower values indicating bet-023
ter, more realistic outputs. Sync-C and Sync-D measure024
lip synchronization in terms of content and dynamics, with025
higher Sync-C and lower Sync-D scores indicating better026
audio alignment.027

2. Detailed Human Evaluation028

To assess the quality of the generated talking head ani-029
mations, a human evaluation was conducted, focusing on030
participants’ subjective assessments of lip synchronization,031
body movement realism, and temporal coherence.032

Participants. The study included 30 participants, with033
66.7% aged 24-30 and 33.3% aged 30-40. The gender dis-034
tribution was 30% male and 70% female, and 83.3% had035
prior experience with AIGC models.036

Task and Measurement. Participants rated each anima- 037
tion on a 5-point Likert scale, assessing its coherence with 038
the input and the quality of reasoning in the animation. A 039
total of 100 videos were presented in random order to en- 040
sure unbiased evaluation, providing insights into subjective 041
perceptions of animation quality and alignment with natural 042
expressions. 043
Results. As shown in Fig. 1, participants consistently 044
rated Teller as superior in lip synchronization, body move- 045
ment realism, and temporal coherence compared to the four 046
benchmark methods. Teller also showed low variance in 047
scores for lip synchronization and body movement realism, 048
demonstrating its robustness and consistency in producing 049
realistic movements. 050
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Figure 1. Human evaluation results among our proposed Teller and other SoTA methods.
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