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8. Algorithm Details

8.1. Server Aggregation Conflicts

As the number of layers k increases, the cumulative conflict
can be expressed as the sum of conflicts across all layers:
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In our analysis, since the parameters Θ are aggregated layer
by layer without cross-layer interactions, we can safely ig-
nore the cross-layer inner product terms when consider-
ing the change in the loss function. Specifically, the in-
ner product of the total updates simplifies to ∆θi · ∆θj =∑K

k=1 ∆θ
(k)
i · ∆θ

(k)
j , as the cross terms ∆θ

(k)
i · ∆θ

(l)
j for

k ̸= l are zero due to the absence of cross-layer aggregation.
Therefore, the change in the loss function can be expressed
as ∆Lj = − 1

α

∑K
k=1 ∆θ

(k)
i ·∆θ

(k)
j , which aligns with the

summation over each layer as in Eq.3. This equivalence in-
dicates that when many layers satisfy ∆θ

(k)
i · ∆θ

(k)
j < 0,

the negative contributions accumulate, leading to an overall
increase in the loss Lj .

Like most methods that use weighted averaging to ag-
gregate all clients on the server (e.g., ∆θ

(k)
G ← ∆θ

(k)
avg =∑N

i=1 pi∆θ
(k)
i ), these existing conflicts have an overall im-

pact on the total loss as follows:
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where
∑N

i=1

∑N
j=1 pipj∆θ

(k)
i · ∆θ

(k)
j = ∥∆θ

(k)
avg∥2 repre-

sents the squared norm of the average update vector for the
k-th layer, and

∑N
i=1 p

2
i ∥∆θ

(k)
i ∥2 accounts for the weighted

sum of the squared norms of individual client updates for
the same layer.

Furthermore, to quantify this conflict, we define the
layer-wise conflicting client update and client update con-
flict rate as follows:

Definition 1 (Layer-wise conflicting client updates). For
each layer k, the updates ∆θ

(k)
i and ∆θ

(k)
j (i ̸= j) are said

to be conflicting with each other if ∆θ
(k)
i ·∆θ

(k)
j < 0.

Definition 2 (Client updates conflict rate). Given N clients,
each with K layers, the total number of layer-wise pairs
across clients is

(
N
2

)
× K. Let P denote the total number

of conflict pairs detected across all clients and layers. The
conflict rate is then defined as P/N(N−1)

2 ×K.

where the value of P is determined as follows, if ∆θ
(k)
i ·

∆θ
(k)
j < 0, a conflict is recorded for that layer and the con-

flict count is incremented by 1. This metric reflects the ex-
tent of directional inconsistency among client updates dur-
ing the layer-wise aggregation process. A higher conflict
rate indicates a greater level of inconsistency, leading to an
amplified negative impact on the global model as the model
depth increases.

8.2. Lagrangian Function and Dual Problem

Since the primal problem is a convex optimization prob-
lem and satisfies the Slater condition, strong duality holds.
Thus, the optimal solution to the primal problem can be
obtained by solving the dual problem. To solve the opti-
mization problem formulated in Section 4.2, we construct
the Lagrangian function by introducing Lagrange multipli-
ers λi ≥ 0 and µi ≥ 0 corresponding to the inequality
constraints:

L(d, ξ, λ, µ) =
1

2
∥d−∆θ⊥∥2 + C

N∑
i=1

ξi

+

N∑
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λi

(
ϵ∥∆θi∥ − d⊤∆θi − ξi

)
+

N∑
i=1

µi(−ξi),

(11)

where d is the adjusted global update we aim to find, ∆θ⊥
is the global conflict-free guidance vector obtained after the
first-stage projection, ∆θi is the update of client i, ξi ≥ 0
are slack variables allowing for constraint violations, λi and
µi are Lagrange multipliers associated with the inequality
constraints.

Taking the partial derivatives of the Lagrangian L with
respect to d and ξi and setting them to zero yields the fol-



lowing optimality conditions:

d = ∆θ⊥ +

N∑
i=1

λi∆θi. (12)

∂L

∂ξi
= C − λi − µi = 0. (13)

where shows that the optimal global update d is a combina-
tion of the global conflict-free update ∆θ⊥ and a weighted
sum of the individual client updates ∆θi, where the weights
are the Lagrange multipliers λi. Since µi ≥ 0, it follows
that λi ≤ C, ∀i = 1, . . . , N. This inequality constrains
the Lagrange multipliers λi to be less than or equal to the
penalty parameter C.

Combining these results, we substitute d back into the
Lagrangian to eliminate the primal variables and formulate
the dual problem. The dual objective function becomes:

max
λ

ϵ
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i=1

λi∥∆θi∥ −
N∑
i=1

λi∆θ
T
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− 1

2
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s.t. 0 ≤ λi ≤ C, ∀i = 1, . . . , N.

(14)

In this dual problem, the term ϵ
∑N

i=1 λi∥∆θi∥ encour-
ages the gloabl update d to align positively with each
client’s update ∆θi. The term

∑N
i=1 λi(∆θ⊥)

T∆θi ac-
counts for the interaction between the global conflict-
free update and each client’s update. The quadratic term
1
2

∑N
i=1

∑N
j=1 λiλj(∆θi)

⊤∆θj captures the pairwise inter-
actions between client updates.

By solving this dual optimization problem, we obtain
the optimal Lagrange multipliers λ∗

i . These multipliers
are then used to compute the optimal global update d∗ =
∆θ⊥ +

∑N
i=1 λ

∗
i∆θi. This adjusted global update d∗ bal-

ances the need to follow the global conflict-free update
while mitigating conflicts between clients, as enforced by
the Lagrange multipliers.
The KKT conditions are as follows:
1. Primal Constraints:

ϵ∥∆θi∥ − dT∆θi ≤ ξi, ∀i = 1, . . . , N.

ξi ≥ 0, ∀i = 1, . . . , N.
(15)

2. Lagrange Multiplier Conditions:

λi ≥ 0, ∀i = 1, . . . , N.

µi ≥ 0, ∀i = 1, . . . , N.
(16)

3. Dual Feasibility Condition:

d = ∆θ⊥ +

N∑
i=1

λi∆θi (17)

4. Complementary Slackness Condition:

λi(ϵ∥∆θi∥ − dT∆θi − ξi) = 0, ∀i = 1, . . . , N.

µiξi = 0, ∀i = 1, . . . , N.
(18)

According to the complementary slackness condition in
the KKT conditions, the optimal solution must satisfy
λi(ϵ∥∆θi∥ − d⊤∆θi − ξi) = 0. When there is a conflict
(ϵ∥∆θi∥ − d⊤∆θi − ξi > 0) and λi > 0, the constraint
is tightly binding, requiring adjustment of d to reduce the
conflict. When λi = 0, it indicates that the constraint for
the i-th client is inactive, and there is no significant conflict
between d and ∆θi. Through the KKT conditions, it is re-
vealed that our method can detect conflicts among clients,
focusing selectively on clients where conflicts exist to avoid
negative impacts on other clients.

9. Ablation and Additional Orthogonal Studies
9.1. Effect of Two-Stage Strategy in FedCALM
There are two stages in FedCALM: Project Conflicting
Client Updates and Conflict-aware Mitigation Strategy. In
the first stage, conflicting updates are projected onto the or-
thogonal plane of the corresponding updates layer by layer,
resulting in a conflict-free global update vector. The second
stage further optimizes this global conflict-free target vec-
tor using a conflict-aware strategy. To evaluate the effec-
tiveness of these stages, we conducted ablation experiments
on four datasets: one using only the first stage to generate
the global conflict-free target vector (FedCALM Only Proj)
and another utilizing both stages (FedCALM Two Stage).

As shown in Tables 6 and 7, using only the first stage
(FedCALM Only Proj) achieves the second-best perfor-
mance across all four datasets. This is because projecting
updates effectively mitigates negative transfer caused by pa-
rameter conflicts from other clients. However, this approach
directly operates on updates without considering the under-
lying relevance of conflicts to client-specific tasks. To ac-
count for this, in the second stage, we balance the trade-
off between clients involved in aggregation and the toler-
ance for conflicts around the global conflict-free target vec-
tor, maximizing its effectiveness for all clients. The tables
demonstrate that our two-stage approach achieves further
performance improvements and highlights its necessity.

9.2. Effect of the Hyperparameters ϵ and C

To determine the optimal update vector within the conflict-
free target vector space, two hyperparameters are used: ϵ
and C. Here, C is a penalty parameter that regulates the
severity of penalties for constraint violations, while ϵ is a
small positive constant that defines a minimum threshold
for positive contributions from each client.

Tables 8 and 9 evaluate the impact of the hyperparame-
ters ϵ and C on the accuracy of FedCALM, using ResNet4



Methods Flowers102 CIFAR100

ResNet4 ResNet10 ResNet18 ResNet34 ResNet4 ResNet10 ResNet18 ResNet34

FedCP 62.82 70.90 67.15 64.48 58.35 59.63 58.21 57.12
FedPAC 63.55 77.08 74.21 65.79 59.89 62.07 58.62 56.63

FedCALM Only Proj 63.89 77.69 75.57 69.10 62.11 62.23 58.96 57.52
Two Stage 75.57 80.24 75.80 71.14 65.20 62.59 61.13 60.79

Table 6. The ablation experiments for the two stages of FedCALM were conducted on the Flowers102 and CIFAR100 datasets. Only
Proj represents the use of only the first stage, Project Conflicting Client Updates, while Two Stage refers to the full two-stage FedCALM
approach. The bold numbers indicate the best performance, while the underlined values denote the second-best methods.

Methods CIFAR10 CINIC10

ResNet4 ResNet10 ResNet18 ResNet34 ResNet4 ResNet10 ResNet18 ResNet34

FedCP 91.13 90.08 89.91 89.72 87.91 85.90 85.78 85.52
FedPAC 89.41 90.53 89.40 87.57 88.22 86.94 86.70 85.84

FedCALM Only Proj 92.14 91.03 90.40 90.04 89.39 87.08 86.95 86.90
Two Stage 93.00 92.26 91.68 91.55 89.69 87.18 87.09 87.25

Table 7. The ablation experiments for the two stages of FedCALM were conducted on the CIFAR10 and CINIC10 datasets. Only Proj
represents the use of only the first stage, Project Conflicting Client Updates, while Two Stage refers to the full two-stage FedCALM
approach. The bold numbers indicate the best performance, while the underlined values denote the second-best methods.

ϵ
C

0.1 1 10 50 100

0.01 62.39 63.17 63.25 63.17 63.15
0.1 62.64 63.89 65.20 64.88 64.76
1 62.61 61.58 57.08 57.55 57.97

Table 8. The ablation experiments for different hyperparameters ϵ
and C using ResNet4 as the base model on CIFAR100 dataset.

and ResNet10 as the base models on the CIFAR100 dataset.
The results show that the highest accuracies of 65.20% and
62.67% are achieved when ϵ = 0.1 and C = 10, respec-
tively. The hyperparameter ϵ determines the degree of posi-
tive contribution from the global update to each client. With
ϵ fixed, accuracy initially increases and then decreases as
C increases, indicating the existence of an optimal balance
point. At this balance point, the strict enforcement of con-
straints and the minimization of the objective function are
optimally aligned, effectively resolving conflicts and pro-
moting client collaboration. However, when C exceeds this
balance point, overly large penalties for constraint viola-
tions lead the optimization process to focus excessively on
satisfying constraints, ultimately resulting in a decline in
model performance.

The optimal hyperparameters of FedCALM using dif-
ferent base models across the four datasets are as follows:
On the CIFAR10 dataset, the optimal hyperparameters for

ϵ
C

0.1 1 10 50 100

0.01 62.00 62.18 62.15 61.87 61.82
0.1 62.48 62.51 62.67 61.61 61.15
1 61.92 62.31 62.59 60.63 60.13

Table 9. The ablation experiments for different hyperparameters ϵ
and C using ResNet10 as the base model on CIFAR100 dataset.

the CNN base model are ϵ = 0.1 and C = 0.1, while
for ResNet4, the optimal hyperparameters are ϵ = 0.1 and
C = 1. For ResNet10, ResNet18, and ResNet34, the op-
timal hyperparameters are ϵ = 0.1 and C = 10. On
the CIFAR100 dataset, the optimal hyperparameters for all
base models are ϵ = 0.1 and C = 10. On the Flow-
ers102 dataset, the optimal hyperparameters for the CNN
and ResNet4 base models are ϵ = 0.1 and C = 100, while
for ResNet10, ResNet18, and ResNet34, the optimal hyper-
parameters are ϵ = 0.1 and C = 10. On the CINIC10
dataset, the optimal hyperparameters for all base models are
ϵ = 0.1 and C = 1.

In summary, FedCALM demonstrates robust perfor-
mance without requiring complex hyperparameter tuning.
Across all datasets, the optimal value for ϵ consistently re-
mains ϵ = 0.1, while the optimal value for C varies within
a manageable range of {0.1, 1, 10, 100}. This simplicity in
parameter selection highlights the adaptability and practical
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(a) FedRep combined with CALM.
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(b) FedALA combined with CALM.
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(c) FedCP combined with CALM.
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(d) FedPAC combined with CALM.

Figure 5. Average test accuracies (%) were reported for SOTA methods with the CALM aggregation strategy, under increasing base model
depth on CIFAR10 and Flowers102 datasets. Black represents the CIFAR10 dataset, while blue represents the Flowers102 dataset. Dashed
lines correspond to the original methods, and solid lines represent methods combined with our CALM aggregation strategy.

applicability of FedCALM in diverse settings.

9.3. Additional Orthogonal Experiments
The consistent improvement across all SOTA methods
highlights CALM’s flexibility and compatibility. For in-
stance, in FedCP combined with CALM (Fig.5c), the accu-
racy on Flowers102 improves significantly for deeper base
models, with ResNet10 showing a considerable gain com-
pared to the original method. On the CIFAR10 dataset
(black lines), the accuracy remains relatively stable with
increasing base model depth, and CALM provides modest
improvements. This is because CIFAR10 exhibits less het-
erogeneity, resulting in fewer conflicts to mitigate. From
Fig.5d, the FedPAC method with ResNet4 on the Flow-
ers102 dataset (blue dashed line) exhibits a significant drop
in accuracy compared to other base models, indicating a
pronounced negative impact of client conflicts in this sce-
nario. However, after integrating CALM (blue solid line),
this downward trend is reversed, resulting in a substantial
improvement in accuracy. This highlights CALM’s ability
to effectively mitigate aggregation conflicts.

10. Visualization of Selective Aggregation
For a better understanding on the selective aggregation
strategy of FedCALM, we visualized the aggregation
weight dynamics of each client across different layers in
detail. As shown in Fig.6 and 7, the visualizations illus-
trate the training process over 500 rounds on CIFAR10 for
20 clients, using CNN (ϵ = 0.1, C = 0.1) and ResNet10
(ϵ = 0.1, C = 10) as the base models, respectively. The
CNN visualization includes all layers, while the ResNet10
visualization focuses on the first three and the last three lay-
ers.

From the subplots (a, c, e) in Fig.6, we observe that the
aggregation weights in the weight layers exhibit significant
sparsity during each training round: only a small number
of clients have large weights (indicated by darker regions),
while the weights of the remaining clients are zero. This
behavior arises because the hyperparameters ϵ = 0.1 and

C = 0.1 are set to relatively small values, emphasizing the
strict enforcement of the client update conflict constraint
(ϵ∥gi∥ − d⊤gi ≤ ξi). The clients with larger weights are
those with the greatest conflict with the update direction d.
FedCALM adjusts d to ensure that these conflicting clients
directly contribute to modifying d, thereby alleviating the
conflict.

In contrast, as shown in the subplots (b, d, f) of Fig.6,
the bias layers demonstrate a different pattern. As training
progresses, the aggregation weights for all clients gradu-
ally stabilize and tend toward a uniform distribution, repre-
sented by the consistent light yellow coloring. This phe-
nomenon occurs because bias parameters typically have
smaller magnitudes, leading to weaker conflicts under Fed-
CALM’s strict constraints. As training continues, the up-
date direction d for the bias parameters tends to align glob-
ally, causing the contributions of all clients to d to become
evenly distributed. In the bias layers, FedCALM focuses
more on global collaboration among all clients and is less
sensitive to update conflicts, resulting in a balanced aggre-
gation weight distribution in the final state.

Compared to the CNN experiment results, Fig.7 uses
ResNet10 as the base model with ϵ = 0.1 and C = 10. Due
to the larger C, which relaxes the constraint on the slack
variable ξi, more clients participate in the aggregation pro-
cess during each training round. This is evident from the
broader range of darker regions in the heatmaps across all
subplots. Although a higher C reduces the emphasis on re-
solving conflicts for specific clients, allowing some clients
whose updates are not fully aligned with the global update
direction d to participate, it also enables the global model to
benefit from a broader range of clients. Similar to the CNN
results, the weight layers still exhibit some sparsity. How-
ever, as training progresses, the weight distribution among
different clients in all layers (except for the Conv1.weight
layer) gradually stabilizes. The results from Fig.6 and 7
demonstrate that FedCALM’s selective aggregation strategy
is highly flexible, showcasing its ability to balance conflict
resolution and global collaboration effectively.
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(a) CNN-Conv1.0.weight
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(b) CNN-Conv1.0.bias
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(c) CNN-Conv2.0.weight
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(d) CNN-Conv2.0.bias
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(e) CNN-FC1.0.weight
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Figure 6. Visualization of the proposed selective aggregation strategy in FedCALM, using a CNN as the base model on the CIFAR10
dataset. The six subplots correspond to different layers of the CNN (Conv1.weight, Conv1.bias, Conv2.weight, Conv2.bias, FC1.weight,
FC1.bias), showing the aggregation weight dynamics across 20 clients over 500 rounds.
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(a) ResNet10-Conv1.weight
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(b) ResNet10-BN1.weight
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(c) ResNet10-BN1.bias
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(d) ResNet10-Layer3.downsample.0.weight
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(e) ResNet10-Layer3.downsample.1.weight
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(f) ResNet10-Layer3.downsample.1.bias

Figure 7. Visualization of the proposed selective aggregation strategy (FedCALM), using a ResNet10 as the base model on the CIFAR10.
The six subplots correspond to the first three layers and the last three layers of the ResNet10 (Conv1.weight, BN1.weight, BN1.bias,
Layer3.DS0.weight, Layer3.DS1.weight, Layer3.DS1.bias), showing the aggregation weight dynamics across 20 clients over 500 rounds.



Method CIF10 w/ CALM CIF100 w/ CALM FL102 w/ CALM

FedRep 87.01 87.35 49.17 50.03 55.91 56.35
FedALA 87.12 87.43 53.00 53.63 60.24 61.21
FedCP 87.00 87.30 50.51 51.93 57.08 57.62
FedPAC 86.95 87.28 52.13 52.73 62.00 62.87
FedCALM 87.82 ↑ 0.32 54.29 ↑ 1.00 63.48 ↑ 0.71

Table 10. Test accuracy of FedCALM and SOTA methods with
ViT as base model on various datasets (w/ CALM indicates per-
formance with CALM enhancement, ↑ indicates the average gain).

Figure 8. Average training loss of FedCALM and SOTA methods
with ViT as base model (CIFAR-10 Left, CIFAR-100 Right).

11. Additional Experiments
FedCALM is not limited to CNN architectures. Due to
resource constraints, we evaluate the performance of Fed-
CALM using a non-pretrained ViT-Tiny-Patch16-224 as
the base model. As shown in Tab.10, FedCALM consis-
tently achieves the best performance, and all SOTA meth-
ods exhibit a significant improvement when combined with
CALM. Additionally, we observe that using ViT as the base
model yields performance comparable to CNNs but infe-
rior to larger ResNet architectures. This observation aligns
with the findings in the ViT paper, which explicitly states
that training ViT from scratch on small datasets (e.g., Im-
ageNet or smaller) results in lower performance compared
to CNNs [51]. Nevertheless, our method still outperforms
existing ViT-based PFL approaches [52].

We provide the average training loss curves (as shown
in fig.8) for the newly added ViT base model experiments,
illustrating the convergence behavior of FedCALM. As the
results show, our method effectively mitigates conflicts dur-
ing global aggregation, leading to faster and more stable
convergence compared to other methods. Additionally, con-
vergence curves for the original scenarios, which converge
faster than ViT in our experiments.

We provide boxplots to better illustrate the distribution
of client accuracy across different methods. As shown in
Fig.9, with ResNet4, FedCALM achieves a median accu-
racy significantly higher than the upper quartile (75th per-
centile) of all other methods, demonstrating its superior
overall performance. With ResNet10, FedCALM’s min-
imum accuracy surpasses the median accuracy of other
methods, indicating that even the worst-performing clients

Figure 9. Client accuracy distribution of FedCALM and SOTA
methods on Flowers102 dataset (ResNet4 Left, ResNet34 Right).

in FedCALM outperform at least 50% of clients trained
with other approaches. Furthermore, the fewer extreme out-
liers (black dots) indicate that FedCALM achieves more sta-
ble performance.
[51] ICLR. 21. An image is worth 16x16 words: Trans-
formers for image recognition at scale.
[52] CVPR. 23. Fedperfix: Towards partial model person-
alization of vision transformers in federated learning.
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