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1. More details of the optimization losses
Following Nope-NeRF [1], we enforce a depth loss between
the rendered depth D̂(p) and the undistorted pre-computed
pseudo ground truth depth D∗(p) as follows:

Ldepth =
1

N

∑
p∈ΩN

||D∗(p)− D̂(p)||1 (1)

Additionally, we consider a point cloud loss to constrain the
relative poses between frame i and frame j:

Lpc =
∑
(i,j)

lcd(P
∗
j , TjiP

∗
i ), (2)

where P ∗
j and P ∗

i denote the point clouds of frame j and
frame i computed from their undistorted depths D∗

j and D∗
i ,

respectively; Tji represents the relative poses of the two
frames; and lcd denotes the Chamfer Distance between the
two point clouds. Additionally, we introduce a photometric
warping loss for the entire image, given by the projection of
point cloud P ∗

i onto frame j:

Lrgb s =
∑
(i,j)

||Ii⟨KiP
∗
i ⟩ − Ij⟨KjTjT

−1
i P ∗

i ⟩||1, (3)

where ⟨⟩ represents the bilinear interpolation operation on
the image to acquire the corresponding color. Finally, our
loss function is defined as:

Lo = Lrgb+λ1Lflow+λ2Ldepth+λ3Lpc+λ4Lrgb s. (4)

The geometry and the flow branches of Flow-NeRF are
jointly optimized using the overall loss Lo.

2. Verification of feature complementarity be-
tween the geometry and the flow branches

Intuitively, given the shared points sampling strategy de-
scribed in Sec. 3.2 of the main paper, the point features
extracted from the canonical space G of the flow branch
should have significant overlap with the point features from
the geometry branch, as both features represent the same
physical scene. We validate this insight by rendering RGB
images from the canonical feature extractor Fθ2, resulting
in a 4-channel tensor output. The first three channels cor-
respond to RGB values, while the last channel predicts the
alpha value σ2. To visualize what can be learned from the
canonical features, we enforce an additional photometric

loss between the rendered flow RGB Ĉflow and the ground
truth RGB image C as:

Lrgb flow =
1

N

∑
p∈ΩN

||Ĉflow(p)−C(p)||1, (5)

where Ω is the set of all N pixels sampled from the frame.
For the RGB prediction from the geometry branch, the loss
function is defined as:

Lrgb =
1

N

∑
p∈ΩN

||Ĉ(p)−C(p)||1, (6)

In Fig. 1, we visualize the results at iteration 20000, an early
stage of the training process. It can be observed that within
the red box, the RGB rendered from the flow branch and
the flow map prediction show clearer details of the desk
corner and the chair contour. In contrast, while exhibiting
more visually realistic colors, the RGB image of the geom-
etry branch lacks the accuracy of the geometry depicted in
the flow RGB. This simple verification experiment demon-
strates that the flow branch captures more structured and
finer details than the geometry branch. This observation in-
spires us to develop the flow feature message passing strat-
egy for the geometry branch, which proves effective in im-
proving both the novel-view synthesis and depth prediction.

3. Dataset details
For Tanks and Temples, following Nope-NeRF [1], we
evaluate novel view synthesis across 8 scenes. We sample 7
images from each 8-frame clip as training views and evalu-
ate the novel view synthesis results on all other views. For
the Family scene, we follow the work of Nope-NeRF [1]
by sampling every other view and evaluating the novel view
synthesis results on the remaining half.

For ScanNet, following Nope-NeRF [1], we sample 80-
100 images from 4 scenes. We sample 7 training views from
each 8-frame clip and evaluate both the novel view synthe-
sis results and the depth estimation results. For data prepro-
cessing, we use the ImageMagick [6] toolbox to downsam-
ple all images into half resolution. In addition, for Scene
0079 00, we crop the dark borders by 10 pixels before pre-
processing. The details of the selected ScanNet sequences
are shown in Tab. 1.

For Sintel, which consists of several scenes with ground
truth flow available between consecutive frames, we train
on 2 scenes: mountain1 and sleeping2. Each scene contains
a total of 50 images; we sample every other frame to create



Figure 1. Complementary features of geometry and flow branch outputs at training iteration 20000: (a) RGB image rendered from
the canonical feature Fθ2; (b) flow prediction; (c) RGB image rendered from NeRF MLP Fθ1; (d) RGB ground truth.

Scenes Type Seq. length Frame ID Max. rotation (deg)

Sc
an

N
et 0079 00 indoor 90 331-420 54.4

0418 00 indoor 80 2671-2750 27.5
0301 00 indoor 100 831-930 43.7
0431 00 indoor 100 591-690 45.8

Table 1. Details of the selected ScanNet sequences.

the training set, leaving the other 25 frames as novel view
test frames. For the flow evaluation, we compare our novel-
view flow results with the RAFT flow prediction results us-
ing the average end-point error (EPE) at non-occluded pix-
els across different frame intervals, as shown in Fig. 9 of the
main paper. RAFT-D in Fig. 9 refers to directly inferring
distant frame flows with RAFT, which yields better flow re-
sults than RAFT-C (where consecutive RAFT flow predic-
tions are chained to formulate long-range flow). We obtain
the ground truth optical flow for long-range flows by chain-
ing consecutive ground truth flow along with their occlusion
masks. We calculate the end-point error (epe) as follows:

epe =
1

M

∑
pgt∈ΩM

||p̂est − pgt||1, (7)

where p̂est and pgt denote the estimated and the ground
truth flow vector, respectively, and ΩM is the set of all non-
occluded pixels.

4. Implementation details

Network structure and learning rate: For the bijective
network, following omnimotion [10], we use a simplified
Real-NVP [3] but with much fewer layers for the trade-
off of training speed. We use 4 affine coupling layers for
the network, and each layer contains three 128-dimensional
MLPs. We set the initial learning rate of both the pose
and the Fθ2 MLP to be 0.0005, the bijective network to be
0.0001, the canonical feature MLP to be 0.0003 and the la-
tent space embedding network to be 0.001. We employ an
auto-scheduler to decrease the learning rate for both the net-
work and the pose until the training PSNR does not increase
for more than 1000 epochs. We set λ1 = 0.05, λ2 = 0.04,
λ3 = 1 and λ4 = 1 for all the loss terms.
Point sampling: For simplicity, we discard the hierarchical
sampling strategy in the original NeRF, but apply a uniform
sampling with perturbation during training to sample m dis-
tance values. In all our experiments, we set the near and far
bound of zn = 0.01, zf = 10, and m = 128.
Pose module: The pose-conditioned latent embedding net-
work is a 256-dimensional 3 layer MLP with Gaber layer,
which takes a 6DOF pose vector [r1, r2, r3, t1, t2, t3] as in-
put and outputs a 128-dimensional feature. The latent pose
feature in the flow branch serves as an identifier of differ-



Method PSNR ↑ SSIM ↑ Abs Rel ↓ RMSE ↓ δ1 ↑ δ2 ↑ δ3 ↑

LocalRF (Meuleman, 2023) 31.25 0.83 11.148 1.498 0.422 0.564 0.850
CF-3DGS (Yu, 2023) 28.51 0.80 12.360 1.014 0.617 0.819 0.875
Ours 32.55 0.85 0.047 0.151 0.982 0.993 0.999

Table 2. Comparison against SOTA methods on novel-view
synthesis and depth estimation across all 4 scenes on the Scan-
Net dataset.

Method PSNR ↑ SSIM ↑ LPIPS ↓

DBARF (Chen, 2023) 22.97 0.73 0.30
CoPoNeRF (Hong, 2024) 21.60 0.67 0.27
Ours 28.73 0.82 0.29

Table 3. Comparison against generalizable NeRF methods on
novel-view synthesis across all 8 scenes on the Tanks and Tem-
ple dataset.

ent frames. The driving force for pose learning comes from
the complementary of RGB, flow, depth, and point cloud
matching loss.

0079 00 Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑

BARF [7] 0.208 0.165 0.588 0.263 0.639 0.896 0.983
NeRFmm [11] 0.494 1.049 1.419 0.534 0.378 0.567 0.765
SC-NeRF [9] 0.360 0.450 0.902 0.396 0.407 0.730 0.908
Nope-NeRF [1] 0.099 0.047 0.335 0.128 0.904 0.995 1.000
Ours 0.040 0.006 0.106 0.057 0.993 1.000 1.000

Table 4. Depth map evaluation on ScanNet 0079 00.

0418 00 Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑

BARF [7] 0.718 1.715 1.563 0.630 0.205 0.569 0.769
NeRFmm [11] 0.907 3.650 2.176 0.769 0.240 0.456 0.621
SC-NeRF [9] 0.319 0.441 0.898 0.377 0.456 0.792 0.930
Nope-NeRF [1] 0.152 0.137 0.645 0.185 0.738 0.998 0.997
Ours 0.034 0.010 0.118 0.070 0.984 0.995 0.998

Table 5. Depth map evaluation on ScanNet 0418 00.

5. Comparison with other SOTA methods
We compare the novel-view synthesis and depth estimation
across all 4 scenes on ScanNet, as shown in Tab. 2. Our
method is clearly better than LocalRF [8] and CF-3DGS [4].
Since both LocalRF and CF-3DGS employ an incremental
manner, they lack global bundle adjustment to correct the
depth scale discrepancy among each sub-model/local Gaus-
sian, leading to inconsistent geometry.

We also compare the novel-view synthesis against gen-
eralizable NeRF methods DBARF [2] and CoPoNeRF [5]
across all 8 scenes on the Tanks and Temple dataset, as
shown in Tab. 3. For CoPoNeRF designed for two-view
geometry, we select the i − 1 and i + 1 frame as the con-
text frames, and query the test frame i in the middle. We
largely outperform generalizable NeRF although they have
been pretrained on large-scale datasets.

6. Drastic camera motion scenes and pose visu-
alization

We test our method on several scenes of the LLFF dataset
which contains irregular and fast camera motion. The visu-

alization of the rendered flow and camera pose can be found
in Fig. 4. The visualization results show that our method
can render plausible flow and estimate camera poses even
under drastic camera motion. We also provide the visualiza-
tion comparison (see Fig. 5) on 2 challenging scenes, from
which the Museum scene has the maximum rotation of 76.2,
and the 0079 00 has the maximum rotation of 54.4. Our
method performs better than Nope-NeRF when the camera
rotation is large.

7. Additional results

We provide several additional visualization results for
novel-view synthesis, novel-view depth, and long-range
novel-view flow predictions across several scenes, as shown
in Fig. 2 and Fig. 3. The qualitative results indicate consis-
tent predictions among the novel-view images, novel-view
depths, and novel-view flows, demonstrating that all our op-
timization objectives are indeed coupled. We also present
a further visual comparison of the novel-view images and
depth predictions on the Tanks and Temples dataset, as
shown in Fig. 6. Compared to the state-of-art method
Nope-NeRF [1], our method produces more photo-realistic
novel-view images and significantly smoother depth maps
with fewer artifacts, clearly validating the effectiveness of
the proposed flow-enhanced novel-view synthesis and flow-
enhanced geometry.

Besides, we provide the per-scene depth prediction re-
sults on the ScanNet dataset. The qualitative results are dis-
played in Fig. 7, while the quantitative results are shown in
Tab. 4, 5, 7 and 8. Both the qualitative and quantitative re-
sults demonstrate that our method predicts depth maps sig-
nificantly better than all other methods.

We also present additional novel-view synthesis and
pose estimation results on the Sintel dataset (see Tab. 9
and Tab. 10). Note that the Sintel dataset contains high-
resolution images and large camera motion, and our method
significantly outperforms Nope-NeRF in both tasks. We
also provide the visualization of the depth prediction and
novel view synthesis on Sintel (see Fig. 8). Our method can
generate depth maps with sharper details and produce more
photo-realistic novel-view images.

8. Limitations and future work

Given accurate pixel-wise and frame-wise correspondence
prediction, one can easily compute the relative poses for
frame pairs using either an analytical pose-solver or per-
forming a motion-only bundle adjustment. We have not yet
explored the potential of the predicted novel-view flow in
this promising direction.



t+8

t-8

t+8

t+8

t+8

t+8

t-8

t-8

t-8

t-8

Rendered RGB Rendered depth Forward/backward long-range novel-view flow
Figure 2. Additional visualization results on long-range frame flow estimation on the Tanks and Temples dataset. T+8 and t-8 denote
forward and backward flow with a frame interval of 8, respectively.

scenes Ours Nope-NeRF [1] BARF [7] NeRFmm [11] SC-NeRF [9]
RPEt ↓ RPEr ↓ ATE↓ RPEt RPEr ATE RPEt RPEr ATE RPEt RPEr ATE RPEt RPEr ATE

Ta
nk

s
an

d
Te

m
pl

e

Church 0.035 0.093 0.008 0.034 0.008 0.008 0.114 0.038 0.052 0.626 0.127 0.065 0.836 0.187 0.108
Barn 0.076 0.162 0.008 0.046 0.032 0.004 0.314 0.265 0.050 1.629 0.494 0.159 1.317 0.429 0.157

Museum 0.125 0.187 0.007 0.207 0.202 0.020 3.442 1.128 0.263 4.134 1.051 0.346 8.339 1.491 0.316
Family 0.173 0.068 0.009 0.047 0.015 0.001 1.371 0.591 0.115 2.743 0.537 0.120 1.171 0.499 0.142
Horse 0.181 0.069 0.009 0.179 0.017 0.003 1.333 0.394 0.014 1.349 0.434 0.018 1.366 0.438 0.019

Ballroom 0.115 0.101 0.008 0.041 0.018 0.002 0.531 0.228 0.018 0.449 0.177 0.031 0.328 0.146 0.012
Francis 0.177 0.296 0.023 0.057 0.009 0.005 1.321 0.558 0.082 1.647 0.618 0.207 1.233 0.483 0.192
Ignatius 0.081 0.049 0.006 0.026 0.005 0.002 0.736 0.324 0.029 1.302 0.379 0.041 0.533 0.240 0.085

mean 0.120 0.128 0.010 0.080 0.038 0.006 1.046 0.441 0.078 1.735 0.477 0.123 1.890 0.489 0.129

Table 6. Camera pose comparison on the Tanks and Temples dataset.

0301 00 Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑

BARF [7] 0.179 0.146 0.502 0.268 0.736 0.883 0.938
NeRFmm [11] 0.444 0.830 1.239 0.481 0.397 0.680 0.845
SC-NeRF [9] 0.383 0.378 0.810 0.452 0.360 0.663 0.846
Nope-NeRF [1] 0.185 0.252 0.711 0.233 0.792 0.918 0.958
Ours 0.036 0.006 0.127 0.053 0.991 1.000 1.000

Table 7. Depth map evaluation on ScanNet 0301 00.

0431 00 Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑

BARF [7] 0.398 0.710 1.307 0.444 0.381 0.655 0.847
NeRFmm [11] 0.514 1.354 1.855 0.562 0.250 0.539 0.742
SC-NeRF [9] 0.608 1.300 1.706 0.677 0.225 0.446 0.645
Nope-NeRF [1] 0.127 0.111 0.579 0.160 0.877 0.978 0.994
Ours 0.078 0.028 0.251 0.107 0.960 0.978 0.999

Table 8. Depth map evaluation on ScanNet 0431 00.
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Figure 3. Visualization on long-range frame flow estimation on the ScanNet and Sintel dataset. T+8 and t-8 denote forward and
backward flow with a frame interval of 8, respectively.
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Figure 4. Visualization results on the LLFF dataset. Our
method can handle large and fast camera motion, and render out
plausible flow.

Method mountain1 sleeping2
PSNR↑ SSIM↑ LPIPS↓ PSNR SSIM LPIPS

Nope-NeRF [1] 27.24 0.86 0.33 27.93 0.79 0.40
Ours 31.24 0.93 0.24 31.19 0.88 0.32

Table 9. Novel view synthesis comparison on Sintel.
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