HiPART: Hierarchical Pose AutoRegressive Transformer
for Occluded 3D Human Pose Estimation

Supplementary Material

A. Pseudo-code for Our HiPART Algorithm

We define the pseudo-code for Stage 1 and Stage 2 of our
Hierarchical Pose AutoRegressive Transformer (HiPART)
algorithm during training in Alg. 1 and 2.

B. Detailed Coarsening Process

Due to the absence of the hierarchical 2D pose dataset, we
construct one as the ground truth for training. We use the
pseudo-ground truth 3D mesh provided by Pose2Mesh [7]
for Human3.6M. It is widely used in 3D human mesh recov-
ery. Following the dense vertices coarsening method from
[2], the process is split into two steps. As shown in Fig. 1,
we first progressively coarsen a human mesh graph with
6890 vertices via Heavy Edge Matching (HEM) [4], select-
ing 96 and 48 joints to represent different levels of human
skeleton structure. Then, we project these 3D poses into
2D pixel space and obtain three levels of 2D poses: sparse,
dense, and fine, denoted as x;, X4, X, with x5 € R/=*2,
xq € R74*2 and x; € R77 %2,

C. Detailed Experimental Setup

We train the MSST with a batch size of 128 for 20 epochs
using the AdamW optimizer [13]. The learning rate is ini-
tialized at 1e-3 with a weight decay of 0.15, warmed up over
the first 500 iterations, and subsequently decayed following
a cosine schedule. We set 8, Ajocal> Aglobal, and 7 to 0.25,
1.0, 0.3, and 0.07, respectively. The detailed structure of the
encoder is shown in Fig. 2.

We train the HIARM with a batch size of 64 for 50
epochs using the AdamW optimizer. The learning rate is
initialized at 5e-4 with a weight decay of 0.03. The \; is
set to 1.5. The dropout rate of the transformer block is set
to 0.25.

For the inference process of HIPART, we select the index
with the highest probability from the predicted vectors to
generate discrete tokens.

For the lifting stage, we adopt the Adam [9] optimizer.
The learning rate is initialized to 1e-3 and decayed by 0.96
per 4 epochs, and we train the model for 25 epochs using
a batch size of 256. The overview of the lifting model is
shown in Fig. 3.

Our experiments are conducted on one NVIDIA Tesla
V100 GPU with the CentOS 7 system, using PyTorch 1.11.0
and Torchvision 0.12.

Algorithm 1 Stage 1: Multi-Scale Skeletal Tokenization
(MSST).

Input: The dense and fine 2D poses x4 and Xy, encoders
&4 and &y, decoders D, Dy and Dy, sparse and dense
codebooks C; and C, action label y 4, weighting fac-
tors 3, Aocar and Agiopal, temperature parameter 7, the
number of iterations 7'.

1: fort =0to T do

{Forward pass}

Zgq < 5f(Xf), Zg <— 5d(Zd).

qs  9Q(z), 25 < Cs(qs).

z!, < Concat(zq, Ds(2s)).

qa < Q(2)), 24 < Ca(qa)-

X4 + Da(qa), Xf < Df(qdaDS(qS))~

pa < Pa(Concat(zq, Ds(2s)))-

{Loss calculation}

Compute the local and global alignment losses ac-

cording to Eq. 3, 5.

11:  Compute the Stage 1 loss £; based on Eq. 6.

12:  Update the model based on V.£;.

13: end for

14: return

R e A A o

_
e

Algorithm 2 Stage 2: Hierarchcal AutoRegressive Model-

ing (HHARM).

Input: The sparse and dense tokens qs and qq, the sparse
2D pose x, the weighting factor A4, the number of it-
erations 7.

1: fort =0toT do
2. {Forward pass}

3 25 — Cs(‘]s)’ Zd — Cd(qd) . ,

4 {g}jco1,..» < LSAB(z24,20Y, .. 2")

50 g =ave(go: 8-+, &)

6:

7

8

9

{hk}k:O,l,.,.,i — GrCSAB(gO7 gl, A ,gi)
{pi-+1}j:0717m,r — PH(h7, ié, R ,izs)
{Loss calculation}
:  Compute the Stage 2 loss L2 based on Eq. 12.
10:  Update the model based on VL.
11: end for

12: return

D. Additional Discussion on Related Work

Hierarchical AutoregRessive Models. VQ-VAE [19] has
pioneered a two-stage image generation process, which
involves initially quantizing images into discrete tokens,
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Figure 1. The overview of the coarsening process, consisting of
two steps. We first progressively coarsen a human mesh with 6890
vertices via Heavy Edge Matching (HEM) [4]. Then we project
these 3D poses into 2D pixel space.

followed by their reconstruction in the subsequent stage.
Based on VQ-VAE, many subsequent works leverage hi-
erarchical discrete tokens for coarse-to-fine image genera-
tion. For instance, VQ-VAE-2 [16] uses models of differ-
ent sizes for top and bottom tokens, while Hierarchical VQ-
VAE [15] creates two levels of tokens to disentangle struc-
tural and textural image information. Our method differs
from these works in three key aspects: (1) Human skele-
tons, with their non-Euclidean structure, require a tailored
model and regression prediction order distinct from those
used in conventional image data. (2) Compared to the unen-
gaged hierarchical tokens in image generation, we give spe-
cific meanings (i.e., representing the multi-level 2D poses)
to the multi-scale discrete tokens with the corresponding
constraint. (3) While hierarchical tokens in image gener-
ation balance code sequence length with image quality, our
tokens provide multi-scale skeletal context specifically de-
signed to tackle occlusions.

Discrete Representation Models in 3D HPE. Recently,
several 3D human pose estimation (HPE) methods have
adopted the two-stage approach to learn discrete represen-
tations. PCT [6] establishes a framework that learns a dis-
crete codebook and then treats pose estimation as a classifi-
cation problem. However, this classification approach fails
to efficiently capture the latent distribution of discrete to-
kens. Di*Pose [20] employs a diffusion model to generate
discrete tokens, enhancing prediction accuracy, but suffers
from slow inference speed due to the need for numerous
sampling steps. In contrast, our method introduces a hierar-
chical autoregressive modeling scheme for faster and more
reliable predictions. Moreover, instead of directly generat-
ing 3D poses, our approach focuses on producing hierarchi-
cal dense 2D poses in a two-stage process.

Diffusion Models in 3D HPE. In recent years, diffusion
models have also been increasingly applied in 3D HPE. For
instance, diffusion models are employed to progressively
refine the pose distribution, reducing uncertainty from high
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Figure 2. The detailed structure of the encoder of MSST, taking
&y as the example. Following PCT [6], the fine pose is first fed
to a linear projection layer to transform the embedding dimension.
Subsequently, these enhanced embeddings are passed through L
MLP-Mixer blocks [18], which deeply fuse the pose feature. We
can finally obtain encoded embeddings by applying a linear pro-
jection along the joint axis and transposing the embeddings.
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Figure 3. The overview of the lifting model, consisting of patch
embedding, vanilla spatial transformer encoder, and regression
head. We concatenate three levels of 2D poses along the joint axis
as the input to patch embedding and vanilla spatial transformer en-
coder. Then the corresponding embeddings are regressed into the
target 3D pose.

to low throughout the estimation process [3, 5, 7]. Other
approaches leverage diffusion models to generate multiple
pose hypotheses from a single 2D observation [8, 17], effec-
tively addressing ambiguity in pose estimation. However,
these models typically exhibit lower throughput and slower
inference speeds compared to the autoregressive approach
in our method, due to the extensive sampling steps needed
for precision. We further explore this in our experiments
detailed in Section E.



Table 1. Results on the H36M test set under occlusion (i.e., mask
and crop).

Mask Ratio \0.0 0.2 0.4 0.6 0.8
DiffPose [7] ‘49.7 64.2/A145  83.9A342  140.3A90.6  284.6A2349

Ours 42.0 532A112 7754355  125.1A83.1  269.4A227.4
Crop Ratio | 0.0 0.1 0.2 0.3 0.4
DiffPose [7] | 49.7 50.0A03  509A12  58.5A838 72.7A23.0
Ours 42.0 422702  42.8A08  48.4164 61.5A105

Table 2. Comparison with diffusion models in 3D HPE. We com-
pare inference speed (frame per second (FPS)), and MPJPE on
Human3.6M.

Method FPS1 MPIPE |
DiffPose [7] 173 49.7
DiffuPose [3] 188 494
vanilla spatial transformer w./ ours 396 42.0
MixSTE [22] (f = 81) w./ ours 681 39.3

E. Additional Experiment Results

In this section, we conduct a series of additional experi-
ments on Human3.6M to further demonstrate the effective-
ness of our method.

Results on Human3.6M under Occlusion. To validate the
performance of our method under different occlusion condi-
tions, we synthesize the occlusion scenarios by masking or
cropping the test images. We investigate the cascaded pyra-
mid network (CPN) [1] with a ResNet-50 [21] backbone as
the 2D keypoint detector to infer the 2D poses of the test set.
We load the model weight from [14], which is pretrained on
COCO [12]. After obtaining the 2D results, we compare the
performance of our method with DiffPose [7]. Tab. 1 shows
that our method performs better under different occlusion
conditions and exhibits stronger robustness when the occlu-
sion worsens.

Comparison with Diffusion Models in 3D HPE. To com-
pare our autoregressive method with diffusion-based meth-
ods including DiffPose [7] and DiffuPose [3], we compare
the inference speed and MPJPE in Tab. 2. Results show that
our method incorporating a vanilla spatial transformer sig-
nificantly outperforms these two diffusion models on FPS
and MPJPE, demonstrating the accuracy and efficiency of
our autoregressive method. Further integrating into the
temporal-based method, i.e., MixSTE [22], achieves the
best inference speed and prediction accuracy.

Detailed Densification Results. To evaluate the effec-
tiveness of the hierarchical dense 2D poses, we conduct a
toy experiment on Human3.6M with the ground truth 2D
sparse pose. As shown in the top of Fig. 4, adding the
ground truth hierarchical 2D dense poses into a vanilla spa-
tial transformer brings a 20.1 mm improvement of MPJPE.
In real-world applications, our method achieves the best

40

35

20.1mm *

reduction

MPJPE ¢

25 ---- SOTA (Single Frame)

---- Vanilla Spatial Transformer
dk GT 2D input

B Pose2mesh

20 HGN
PCT
e Ours

0 5 10 15 20
2D Mean Error 1

.
- ~-

-e- Pose2Mesh (avg: 21.4)

N
o

N P

—e— HGN (avg: 18.1) PSR TR Lo o
- ——
—e— Ours (avg: 9.9) e A e
20 BT i 4 - e
a7 TN r"-'
P R N

-
o

pm—_ -

e
-~

WalKalKT- €% urcNalO oot moke Greet  DIf: Waltonot® pist: pose Gikd- St

2D Mean Error

-
)

5

Figure 4. Top: The prediction accuracy of the fine 2D pose (96
joints) and lifted 3D pose (17 joints) across various methods. Bot-
tom: Detailed densification results across various actions for three
methods on Human3.6M using the ground truth sparse 2D pose
(i.e., 17-joint pose) as the input.

performance in 2D mean error and MPJPE compared with
Pose2Mesh [2], HGN [10], and PCT [6]. Furthermore, The
bottom of Fig. 4 illustrates the 2D Mean Error of the fine
2D pose across various actions for three different meth-
ods. Two conclusions can be intuitively concluded: (1) As
the complexity of the action increases, i.e., when there is
a higher frequency of occlusions, the densification perfor-
mance deteriorates. (2) Our method enhances the densifica-
tion performance, with an average improvement of 11.5mm
for Pose2Mesh and 8.2mm for HGN. This enhancement is
particularly evident for actions with severe occlusions, such
as the Sit action, where our method achieves an improve-
ment of 13.2mm for Pose2Mesh and 11.2mm for HGN.

Ablation Study on Different Parameters of HiPART.
Tab. 3 details the effects of various parameters on our
model’s performance and complexity. Optimal results are
achieved with 4 MLP-Mixer blocks of the MSST encoder
and 12 blocks in GCSAB, with no significant improvements
from adding more layers. Additionally, the results show
that increasing the embedding dimension from 96 to 128
enhances performance, but dimensions larger than 128 do
not yield further benefits. Therefore, we establish the de-
fault settings as L1 = 4, Ly = 12, and D1 = Dy = 128.

Extra Sequence-based Results. Table 4 provides extra re-
sults for sequence-based DiffPose and MixSTE with f =
243. Our method is best in MPJPE under both frame and



Table 3. Ablation study on different parameters of HiPART. L,
and Lo denote the number of blocks of the MSST encoder and
GCSAB, respectively. Dy and D> are the embedding dimensions
of the MSST encoder and HiARM, respectively.

L Ly D, D, | ParamsqM) FLOPs(G) MPJPE
2 6 128 128 1.8 1.41 441
3 8 128 128 2.1 1.82 43.5
4 12 128 128 24 224 42.0
5 16 128 128 2.7 2.65 422
4 12 9 9 2.0 1.77 439
4 12 128 128 2.4 224 42.0
4 12 256 256 3.6 4.14 425

Table 4. Comparison with DiffPose and MixSTE on Human3.6M
under frame (left) and sequence (right) based settings.

Method MPIPE FPS | Method MPJPE FPS
MixSTE (f=1) 51.1 358 | MixSTE (f=243) 409 1055
DiffPose (f=1) 49.7 173 | DiffPose (f=243) 369 671
Ours (f=1) 42.0 396 | Ours+MixSTE (f=243) 36.7 577
Our Method Ground Truth - Input Our Method Ground Truth
s B
| 1 ]

Figure 5. Failure cases on 3DPW. Left: severe occlusion where
even human perception struggles to infer 3D poses. Right: unseen
fencing motion which is absent from the training set.

sequence based settings.

F. Additional Visualization Analysis

In this section, we provide additional visualization analysis
to better understand our approach.

Discussion of Failure Cases. Fig. 5 shows the failure cases
on 3DPW. (i.e., severe occlusion and rare poses).

More Analysis on the Similarity of Hierarchical Code-
books. We supplement the cosine similarity matrices cal-
culated from the randomly selected 100 tokens. As shown
in Fig. 6, we can draw similar conclusions to those in the
main text.

More Visualization of Hierarchical Poses. Qualitative
results in Fig.7 further demonstrate that additional joints
around occluded areas provide richer skeletal information.
For instance, when the right leg is occluded as shown in the
fourth row of Fig. 7, the sparse pose offers limited support
with only two joints (knee and ankle) available, while the
denser pose includes multiple leg joints, capturing a more
detailed structure around the occlusion and aiding in pre-
dicting the occluded right leg.

More Visualization of Poses under Occlusion. As
shown in Fig.8, we provide additional qualitative results
on Human3.6M and 3DPW, comparing our method with
DiffPose[7]. DiffPose can predict decent results on Hu-
man3.6M, but its predictions in occluded areas become sig-
nificantly poorer when generalized to the more occlusion-

heavy 3DPW dataset. In contrast, our method maintains
strong occlusion robustness on 3DPW. For instance, in the
first row of the 3DPW data, where the back severely oc-
cludes both arms, DiffPose’s predictions for the occluded
area deviate substantially from the ground truth. Our ap-
proach leverages hierarchical information near the arms to
aid in inference, effectively predicting the joints at the oc-
cluded locations.

G. Limitation and Future Work

A current limitation of our approach is its reliance on the
single-frame based methods [11] for the lifting model. Ap-
plying our method directly to the temporal-based lifting
models [22] would slow down inference, limiting our ability
to further utilize temporal information and indicating room
for improvement in our approach. This is attributed to the
expansion of input joint quantities. The conventional at-
tention mechanisms have a computational complexity that
scales significantly with the joint quantities.

Moving forward, we aim to develop a temporal-based
lifting model compatible with hierarchical 2D poses. Our
future work will involve strategies such as sampling the key
joints from hierarchical 2D poses and optimizing the com-
putation of attention mechanisms to manage the joint quan-
tity increase effectively. By doing so, we expect to integrate
the strengths of temporal-based models with our hierarchi-
cal pose approach, thereby improving the accuracy of pose
estimation while maintaining computational efficiency.

Besides, Tab. 6 in the main paper shows that our method
greatly improves single-frame lifting models more than
multi-frame methods, suggesting considerable potential for
optimizing how our densification approach combines with
temporal information, which is straightforward in our ex-
periments. Firstly, each frame of the 2D pose sequence is
fed into HiPART to generate hierarchical 2D poses. These
poses are concatenated along the temporal and joint dimen-
sions to form a tensor of size T' x (J; + Jq + Jf) x 2,
which is input for temporal-based lifting models to infer the
final 3D pose. In the future, we plan to delve into more
effective densification methods for integrating hierarchical
spatial and temporal information to better exploit their in-
terplay and further boost the performance of 3D HPE.
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Figure 6. Hierarchical codebooks similarity analysis. The cosine similarity is calculated based on the random selection of 100 tokens
from both the sparse and dense codebooks. (c) (d) The x-axis represents sparse tokens, and the y-axis represents dense tokens.
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Figure 7. Qualitative results of reconstructed 3D poses and hierarchical 2D poses on Human3.6M under occlusions.
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