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Supplementary Material

Here, we present the dataset details in Section 1, fol-
lowed by the implementation details in Section 2. Finally,
we provide additional experimental analysis in Section 3.

1. Dataset Details

In this section, we provide more details on the datasets we
employ for experiments in this paper, including CIFAR-10,
CIFAR-100, FOOD-101, Semi-Aves and STL-10.

CIFAR-10 [10] is an image classification dataset com-
monly used in various computer vision tasks and is also
a classical benchmark for semi-supervised learning. The
dataset consists of 60,000 images across 10 classes. Each
class contains 6,000 images, which are split into 5000 im-
ages for training set and 1000 images for testing set. The
image size is 32× 32.

CIFAR-100 [10] is another popular SSL benchmark,
which contains 100 fine-grained classes with 60,000 color
images, where each class contains 600 images. The image
size is also 32× 32. The dataset is split in a fashion similar
to CIFAR-10, with 50,000 images in the training set where
each class contains 500 samples and 10,000 images in the
testing set with 100 samples per class.

FOOD-101 [2] is an image classification dataset that is
popular in various computer vision tasks, including SSL.
The dataset comprises of 101,000 food images split across
101 classes. Each class contains 1,000 images, with 750
images in the training set, and 250 images in the testing set.
As the images in this dataset are not fixed, we resize all
images into 256× 256 in our experiments

Semi-Aves [19] is a fine-grained image classification
dataset containing 200 bird classes. The dataset includes a
labeled training set comprising of 3959 images, a testing set
with 8000 images, and finally an unlabeled training dataset
with two parts. The first part (i.e., in-distribution) has
26,640 unlabeled images are drawn from the same classes
as the labeled training set. The second portion (i.e., out-
of-distribution) contains 122,208 samples from classes not
present in the labeled training set.

STL-10 [3] is a 10-class image classification dataset ex-
tracted from ImageNet [4]. The dataset consists of 5000 la-
beled samples and 100,000 unlabeled samples for training
set and 8000 samples for test set.

2. Implementation Details

Architecture. The general SSL architecture for vision tasks
consists of an image encoder to obtain the image represen-

tation and a classifier to predict the class probability. In this
work, we aim to introduce linguistic knowledge to guide
the training. To create feature alignment between the image
representation and the text embedding, we additionally add
a projector head between the image encoder and the clas-
sifier, which maps the image representations into the same
dimension space as the text embeddings. In particular, for
ViT-VPT backbone, we adopt a fully connected layer as the
projector head. For EfficientNet-B2 and ViT-FFT, we adopt
a Multi-Layer Perceptron (MLP) layer, which consists of
a fully connected layer with output dimensions as 1024,
a ReLU activate layer, a Batch Normalization layer and a
fully connected layer where the output dimensions relies on
the text embedding dimension.

Training Details. Following BorLan [14], we utilize 80
handcraft prompts in CLIP [16] and use the frozen pre-
trained Bert-Large [5] as the pre-trained language model
to produce text embeddings for each class. Instead of us-
ing the [CLS] or [EOS] embedding, we directly utilize the
output embedding associated with each class, following the
approach of BorLan [14]. Moreover, we also calculate
the covariance matrices for text embeddings with the di-
agonal form to calculate the feature alignment loss Lstext
with the same manner in BorLan. For all backbones, we
adopt stochastic gradient descent (SGD) with a momentum
of 0.9 as the optimizer and the total training steps are set
to 15, 000. The momentum decay λ of EMA is set as 0.99
for all experiments. µ is set as 2. Following FINESSL [6],
we train ViT-VPT with a learning rate of 0.03, where the
parameters of CLIP are frozen. The learnable prompts has
the length of 50 and we adopt a batch size of 32 and the
weight decay is set as 5× 10−4. We fine-tune the model 30
epochs with 500 steps per epoch. Same with FINESSL, the
threshold τ is set as 0.7. λu is set as 3 and λls is set as 0.1.
As for both EfficientNet-B2 and ViT-FFT backbones, we
follow BorLan [14] to fine-tune the vision model with the
learning rate of 1e−3 and a 10× larger value for classifier
and projector head. The batch size of these two backbones
are set as 64. The threshold τ is set as 0.7. λu and λls are
set as 1.

3. More Experimental Analysis
More Criteria. To comprehensively compare LADaS with
the state-of-the-art methods in a classification setting, we
further report the results of precision, recall, F1 score, and
area under curve (AUC) on FOOD-101 with each class N2
setting, CIFAR-10 with N1 setting, and CIFAR-100 with



Datasets FOOD-101-N2 CIFAR-10-N1 CIFAR-100-N4

Criteria Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1 AUC

FixMatch [18] 72.37 73.30 69.09 98.41 53.11 67.64 57.86 94.17 76.79 76.91 74.98 99.11
DebiasPL [22] 85.15 86.11 85.20 99.48 77.30 77.20 77.24 85.76 79.45 79.69 79.40 99.24
FINESSL [6] 86.97 86.85 86.79 99.66 95.44 95.35 95.33 99.85 80.29 79.37 79.13 99.36

LADaS 89.27 89.16 89.07 99.82 96.65 96.63 96.63 99.92 80.98 81.18 80.47 99.44

Table 1. Precision, recall, F1 score, AUC results on FOOD-101, CIFAR-10 and CIFAR-100 datasets.

Dataset CIFAR-10 CIFAR-100
#Label N1 N4 N25 N2 N4 N25

PL [11] 62.35 ± 3.1 11.79 ± 5.3 4.58± 0.4 36.66± 2.0 26.87 ± 0.9 15.72± 0.1

MT [20] 35.43 ± 4.9 12.85 ± 2.5 4.75 ± 0.5 40.50 ± 0.8 30.58 ± 0.9 17.09 ± 0.4

MixMatch [1] 34.96 ± 2.6 2.84 ± 0.9 2.05 ± 0.1 39.64 ± 1.3 27.74 ± 0.1 16.16 ± 0.3

VAT [15] 39.93 ± 6.3 6.67 ± 6.6 2.33 ± 0.2 34.11 ± 1.8 24.67 ± 0.4 16.58 ± 0.4

UDA [15] 21.24 ± 3.6 2.08 ± 0.2 2.04 ± 0.1 34.51 ± 1.6 24.15 ± 1.6 16.19 ± 0.2

FixMatch [18] 33.50 ± 15.1 2.56 ± 0.9 2.05 ± 0.1 34.71 ± 1.4 24.48 ± 0.1 16.02 ± 0.1

FlexMatch [26] 29.46 ± 9.6 2.22 ± 0.3 2.12 ± 0.2 36.24 ± 0.9 25.99 ± 0.5 16.28 ± 0.2

Dash [24] 25.64 ± 4.5 3.37 ± 2.0 2.10 ± 0.3 36.67 ± 0.4 25.46 ± 0.2 15.99 ± 0.2

AdaMatch [17] 14.85 ± 20.4 2.06 ± 0.1 2.08 ± 0.1 26.39 ± 0.1 21.41 ± 0.4 15.51 ± 0.1

InstanT [12] 12.68 ± 10.2 2.07 ± 0.1 1.92 ± 0.1 25.83 ± 0.3 21.20 ± 0.4 15.72 ± 0.5

FreeMatch [23] – – – 21.07 ± 0.72 15.97 ± 0.24 –
SemiReward [13] – – – 20.06 ± 0.41 15.62 ± 0.71 –

InterLUDE [9] 31.90 ± 4.1 1.78 ± 0.1 1.55 ± 0.1 35.66 ± 1.9 21.19 ± 0.2 13.39 ± 0.1

InterLUDE+ [9] 12.29 ± 7.3 1.55 ± 0.1 1.49 ± 0.1 23.60 ± 1.2 16.32 ± 0.3 12.93 ± 0.2

LADaS 7.61 ± 5.34 1.17± 0.02 1.14 ± 0.01 18.31 ± 1.65 15.04 ± 0.09 12.31 ± 0.32

Table 2. The complete error rate (%) with ViT-FINE backbone on CIFAR-10 and CIFAR-100 in table 4 in the main paper. The error
rate and 95% confidence interval are reported based on three random seeds. The results of FreeMatch and SemiReward are copied from
SemiReward, while other results are directly copied from InterLUDE [9]. The best results are highlighted in bold and the second-best
underlined.

N4 setting. We adopt ViT-VPT as the backbone and se-
lect the top two strongest baselines, i.e., DebiasPL and FI-
NESSL, and the most popular SSL method FixMatch as
comparison baselines. Performance results are shown in
Tab. 1. As can been seen, our proposed LADaS achieves
the best performance across all metrics on different datasets.
This demonstrates the effectiveness of LADaS over the
baseline methods.

Detailed Performance on ViT-FFT Backbone. We
provide complete results on CIFAR-10 and CIFAR-100
datasets with ViT-FFT backbone in Tab. 2. As can be seen,
our LADaS achieves the best performance compared to all
the baselines, which demonstrates the superiority of our
proposed method. Meanwhile, we notice that InterLUDE+
outperforms InterLUDE, which introduces the threshold-
adjusting scheme of FreeMatch into InterLUDE. The rea-
son behind this maybe that the threshold-adjusting scheme
can play the role of implicit pseudo-label debiasing, as
it assigns different thresholds to select pseudo-labels for

each class. The same observation can be found by com-
paring FreeMatch and FixMatch. These observations ver-
ify the importance of pseudo-label debiasing in the founda-
tion model-based semi-supervised learning. In contrast, our
LADaS introduces explicit pseudo-label debiasing during
the training process, leading to the best performance.

Convergence Speed. We visualize the change of top-1
accuracy on testing set during training process in Fig. 1, and
compare LADaS with FixMatch, DebiasPL and FINESSL.
From this figure, we can see that our LADaS converges very
quickly, requiring fewer than 10 epochs to achieve near-
optimal performance. Although FixMatch and DebiasPL
also converge quickly, they tend to be constrained by sub-
optimal performance. In contrast, our LADaS converges
efficiently while achieving superior performance.

Impact of Different PLMs. To investigate the influ-
ence of different pre-trained language models, we conduct
experiments on FOOD-101 dataset under the N2 setting
with different PLMs, including SigLIP [25], BertL [5] and
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Figure 1. The top-1 accuracy on testing set for each epoch on (a) CIFAR-10 with one sample per class and (b) FOOD-101 with two samples
per class.

FINESSL

Figure 2. Confusion matrix on the testing set of CIFAR-10 with N1 setting.

CLIP [16], denoted as w/ SigLIP, w/ BertL and w/ CLIP, re-
spectively. The performance is shown in Tab. 3, where w/o
LAN denotes without linguistic knowledge. From this ta-
ble, we notice that without linguistic knowledge, w/o LAN
performs the worst, which indicates the importance of using
linguistic knowledge for SSL task. Meanwhile, we find that
w/ SigLIP performs worse than w/ BertL and w/ CLIP. The
reason may be that the pre-trained PLMs inherently con-
tains biases, which may influence the performance.

Method w/o LAN w/ SigLIP w/ BertL w/ CLIP
13.29 11.64 10.85 10.67

Table 3. Error rate of different PLMs on the FOOD-101 dataset
with the N2 setting.

Different Parameter-Efficient Fine-Tuning (PEFT).
To get deeper insights in our proposed LADaS and verify its
robustness on different PEFT strategies, we conduct exper-
iments on CIFAR-100 and FOOD-100 with different PEFT
strategies, including VPT, LoRA [8] and Adapter [7]. The
performance is illustrated in Tab. 4. From this table, we
notice that our proposed LADaS is robust to diverse PEFT
strategies. Meanwhile, LoRA outperforms VPT for all set-
tings across different datasets, which implies that LoRA is

Settings CIFAR-100 FOOD-101

N4 N25 N2 N4

VPT 18.75 15.49 10.85 10.13
LoRA 18.55 15.11 10.33 9.77

Adapter 17.98 15.44 11.34 9.91

Table 4. Error rate for different PEFT strategies with LADaS on
CIFAR-100 and FOOD-101 datasets.

the more effective strategy than VPT for foundation model-
based SSL task.

Confusion Matrix. We provide the confusion matrix
which compares the true labels (y-axis) with predicted la-
bels (x-axis) for FixMatch, DebiasPL, FINESSL and our
LADaS on CIFAR-10 with N1 setting. The darker diag-
onal elements represent better classification performance.
The off-diagonal elements indicate incorrect classifications.
The results are shown in Fig. 2. From this table, we can ob-
serve that our LADaS achieves the best class-wise accuracy,
as the majority of the dark elements are concentrated along
the diagonal.

Impact of Hypermeter in Soft Pseudo-label. To study
the influence of ϵ, we conduct experiments with ϵ values
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Figure 3. Impact of the hyperparameter ϵ in the soft pseudo-label on (a) FOOD-101 with N2, N4 and N10 settings and (b) CIFAR-100 with
N4, N25 and N100 settings.
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Figure 4. T-SNE visualization of features for test data on CIFAR-100 with 4 samples per class and FOOD-101 with 2 samples per class,
respectively.



ranging from 0.1, 0.3, 0.5, 0.7 to 0.9. As shown in Fig. 3, the
performance grows with ϵ increasing from 0.1 to 0.5. In a
sense, a small value of ϵ corresponds to assigning relatively
large probabilities to the predicted pseudo-labels in the soft
pseudo-labels. However, since the pseudo-labels for low-
confidence samples predicted by the vision model can be
noisy, the resulting soft pseudo-labels may also inherit this
noise. In contrast, the performance drops from 0.5 to 0.9,
suggesting that there exist clean predicted pseudo-labels
among the low-confidence samples. A large ϵ might lower
the probabilities assigned to these clean pseudo-labels, ulti-
mately degrading the performance.

Visualization on Feature Space. To gain deeper in-
sights into our LADaS, we provide visualizations of learned
representations on the testing data and compare it with De-
biasPL and FINESSL, for both FOOD-101 with N2 setting
and CIFAR-100 with N4 setting. The results are obtained
with t-SNE [21] as shown in Fig. 4. Different colors repre-
sent different classes. As can be seen, our LADaS tends to
separate samples of different classes into different groups
across both FOOD-101 and CIFAR-100 datasets. On the
contrary, the DebiasPL is incapable of discriminating sam-
ples of different classes well, especially on CIFAR-100 with
N4 setting. Moreover, our LADaS show superiority over
FINESSL across all datasets. The reason may be attributed
to our proposed language-assisted pseudo-label debiasing
module can help the model produce more accurate and bal-
anced pseudo-labels for model training and hence promote
the performance.
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