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1. Derivations
1.1. Epipolar Depth Nexus

Once the coordinates of the perpendicular foot, denoted as
Pj, are determined in the target view’s camera coordinate
system (as shown in Eq. (7) in the main paper), the depth of
point p;, denoted as D™J (p;, p;), can be computed using
Eq. (8). Below, we provide a detailed derivation of Eq. (8)
as presented in the main paper.

Since both p; and p; are expressed in their respective
camera coordinate systems, we first convert them into nor-
malized image coordinates to facilitate the depth calculation.
These coordinates, situated in their respective 3D domains,
are referenced with the source view camera O; and the target
view camera O as origins. The transformation is formulated
as follows:

pi= K ey )", By =K@y, (D)

where K; and K represent the intrinsic parameters of the
source and target cameras, while (z;,v;), (Z;,7;) are the
image coordinates of points p; and pj;, respectively.

Next, we refer to Fig. | to elucidate the geometric rela-
tionships employed in our method. Notably, the triangles
AOiAPj and AO; Bp; are similar, allowing us to establish
the following relationship:
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Here, |O; P;| and |O;p;| represent the magnitudes of the
respective vectors. Similarly, |O; A| and |O; B| represent the
respective distances from O; to the planes containing Pj and
p; along the optical axis.
To further analyze t}%ometry, we introduce an auxil-

iary point ]5;- such that Oj;ﬁ;- has the same length and direc-
—
tion as O;p;. Projecting O; perpendicularly onto the line
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Figure 1. Illustration of the geometry relationships used in Epipolar
Depth Nexus step.

O, P; yields point @, and projecting ﬁ; onto the same line
yields point U. The alternate interior angles 20O, P;Q and
Aﬁ;OjU are equal, leading to similar triangles AO; P;Q
and Aﬁ;OjU. Notice that triangles AO;p;O; and Aﬁ;Ojﬁj
share the same base, allowing us to further derive Eq. (2) as
follows:
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Using the formula for the area of a triangle, the above equa-
tion simplifies to:
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The 3D coordinates of vectors O;p;, O;0;, and O;p, can

be determined using the extrinsic parameter transformation
formulas:

0;jpj = Oipj — 0i0;
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Figure 2. Illustration of the geometric definitions used.
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where R;,T; and I?;, T} are the extrinsic parameters of the
source and target cameras. Finally, we plug Eqgs. (5), (6) and
(7) into Eq. (4) to obtain the analytical form of the depth of
point p; as follows:
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1.2. Flow-Resilient Depth Blending

Here, we derive Eq. (9) from the main paper, used in our
Flow-Resilient Depth Blending technique. Fig. 2 illustrates
the geometric definitions of all relevant symbols. Our objec-

tive is to obtain the analytical form of the derivative of dis;. ¢
ddis,-,i f
ddispro *

with respect to disy;,, denoted as dz’s;.e ¥ (dispro) =

. L. . ddis,.
This derivative is decomposed into two factors, % and
do
ddispro

Derivation of ddé%. We begin by determining the expres-

, connected by the chain rule.

sion of ddé%. Using the law of cosines and the law of

sines, and referring to Fig. 2 (a) (similar to Fig. 3 (b) in the
main paper), we derive the following equations:
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Substituting Eq. (10) into Eq. (9) and simplifying yields:
dis?, ¥ sin’ 3

2

e dis%ef + 1% — 2dis,t cos 3

= dis}, ;sin® B + dis?,; cos® B
42— 2dis,eyt cos B
= dis, sin® B + (disyef cos f —t)%.
an

Furthermore, we rewrite Eq. (11) in the following form:
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Next, we isolate zfjj g from the right-hand side of Eq. (12)
to get:

cos® a cos 3 t

= - 2, 13
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To take the square root of both sides of the equation, we
need to ascertain the positive or negative nature of each
side under the square root. Specifically, the formula after
taking the square root can be determined based on geometric
relationships. When > > 0, indicating that « is an acute
angle, as illustrated in Fig. 2 (b), the following formulations
hold:
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Conversely, when £ < 0, indicating that « is an obtuse

angle, as illstrated in Fig. 2 (c), the following relationships
hold:
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Combining both cases, we derive the following equation:

cos t cos
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and we can rewritten the above equation as follows:
tsin a
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Thus, we obtain the gradient expression of dis,.s with re-

spect to a, which is formulated as follows:
ddisey tsin

da  sin®(a+p)
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Derivation of —49—, Using a similar approach as for
ddispro

Eq. (19), we can derive the relationship between « and
disprot

m sin o

sm(at0) @h

dispro =

Differentiating both sides with respect to disp,,, we obtain

3 d‘ilg , which are formulated as follows:
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Final Expression for dis/ f(dispm). Using Egs. (20) and
(23), we obtain the analytical form of dis/, f(dispm), that is
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Note that the side lengths in Fig. 2 (a) (e.g., t, m) can be
derived from the known point coordinates and camera poses.
The angles «, 3, and @ can then be calculated using the law
of cosines.

2. Implementation Details

We implement our method using PyTorch 2.0.0 on an RTX
3090. We conduct 30k iterations for training on the LLFF
dataset, 10k iterations for DTU and MipNeRF-360 Datasets,
and 4k iterations for Blender dataset. During training, the
learning rate for scale was set to 0.03 across the LLFF,
MipNeRF-360, and Blender datasets, while the other pa-
rameters remain consistent with those used in 3DGS.

2.1. Dataset Split

LLFF&MipNeRF-360. Following previous methods [8,
13], we sample images at intervals of 8 from the LLFF [6]
and MipNeRF-360 [1] datasets to create the test set, while
the remaining images are used as the training set. For the
sparse-view synthesis task, we perform uniform sampling
within the training set to select the training views. Consistent
with previous work, we downsample all images by a factor
of 8.

DTU. Following previous methods [12], we select 15 scenes
from the DTU [3] dataset out of 124, specifically scene IDs
8, 21, 30, 31, 34, 38, 40, 41, 45, 55, 63, 82, 103, 110, and
114. For each scene, views 25, 22, and 28 are used as the
3-view training set, while views 1, 2, 9, 10, 11, 12, 14, 15,

\ Setting | PSNRT SSIMT LPIPS |
3DGS | | 1765 0816  0.146
A. Average 18.92 0.836 0.128
B. Nearest 19.57 0860  0.108
C. Weighted 19.05 0850  0.119
Ours | D-FRDB 1976 0.864  0.109
E. Average + FFDP | 1872  0.830  0.135
F. Nearest + FFDP 1974 0860  0.108
G. Weighted + FFDP | 19.05  0.853  0.116
H. FRDB + FFDP 2021 0.869  0.102

Table 1. Ablation study on DTU with 3 input views.

23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 41, 42, 43, 45,
46, and 47 are designated as the test set. All images are
downsampled by a factor of 4.

Blender. In the Blender [7] dataset, following previous
methods [2], we select views 26, 86, 2, 55, 75, 93, 16, 73,
and 8 for training. For evaluation, we uniformly sample 25
images from the test set. All images are downsampled by a
factor of 2.

2.2. Additional Training Details

During training, we maintain most parameters consistent
with those used in 3DGS. Here, we provide additional details
beyond those in the main paper. Specifically, the threshold
€q used in Flow-Filtered Depth Pruning is set to 1.0 for
LLFF and DTU, 0.1 for MipNeRF-360, and 0.01 for Blender.
The hyperparameter A. in the objective function was fixed
at 0.2. Camera poses are estimated using COLMAP [9],
following the methodology of existing sparse-view synthesis
studies [5, 11, 13]. We utilize FlowFormer++ [10] as the
optical flow estimator.

3. Extended Ablation Analysis
3.1. Quantitative Ablation Study on DTU Dataset

To complement the ablation results presented in the main
paper for the LLFF real-world benchmark, we conduct addi-
tional experiments on the object-centric DTU dataset, with
the results summarized in Tab. 1. Our Flow-Resilient Depth
Blending (FRDB) method significantly improves sparse view
synthesis performance over variants with alternative blend-
ing strategies. Furthermore, when combined with Flow-
Filtered Depth Pruning (FFDP), our approach generally out-
performs most configurations. This improvement is driven
by cleaner, more accurate, and more comprehensive point
clouds generated using epipolar depth priors, which lead
to enhanced geometric precision and higher-quality details.
However, under the Average settings (A. vs. E.), where
depth estimates are extremely inaccurate, excessive splitting
and replication of erroneous points during refinement lead
to performance degradation. By contrast, in scenarios with



Method Point Number PSNR1 SSIM?1 LPIPS |

Model Type ‘ chairs kitti sintel ~ things_288960  things

DNGaussian 43K 18.86 0.598 0.297
DNGaussian* 77K 19.96 0.684 0.232
CoR-GS 80K 20.29 0.705 0.201
FSGS 299K 20.34 0.695 0.207
Threshold Point Number PSNR{ SSIM1 LPIPS |
0.01 110K 20.21 0.678 0.218
0.1 191K 20.70 0.716 0.193
1.0 427K 21.07 0.738 0.177
2.0 456K 20.97 0.733 0.179
3.0 465K 20.89 0.733 0.180
4.0 469K 20.86 0.733 0.180

Table 2. Influence of distance threshold choices and point cloud
comparison with state-of-the-art 3DGS-based competitors on the
LLFF dataset with 3 input views. * denotes fused stereo initial
point clouds.

relatively accurate depth priors, FFDP effectively enhances
reconstruction quality by refining point clouds and preserv-
ing finer details. Theses consistent performance gains across
different datasets demonstrate the robustness and effective-
ness of our proposed method.

3.2. Influence of Distance Threshold

We further investigate the impact of varying threshold €4 in
FFDP, as detailed in Tab. 2. The table presents both quan-
titative metrics and the number of points in the Gaussian
representation point cloud. Unlike Tab. 1 in the main paper,
where competing methods’ results are taken from their orig-
inal publications, we obtain these metrics by training their
official implementations with default settings, as the point
counts were not reported.

Examining the lower half of Tab. 2, we observe that when
€4 18 set to low values (e.g., 0.1 or 0.01), the performance of
NexusGS declines due to the insufficient number of points in
the initial point clouds. This reduction in point density leads
to excessive splitting in 3DGS, which introduces random-
ness in point placement. Moreover, the lack of supervision
from sparse views prevents the generation of a dense, com-
prehensive point cloud, ultimately degrading performance.

The optimal results are achieved with a threshold of 1.0.
As the threshold increases, more comprehensive and still
relatively accurate initial points are obtained, significantly
improving the quality of the generated point cloud and the
final reconstruction. However, further increases may in-
troduce additional inaccurate points, negatively affecting
performance. Despite this, we find that as the threshold
grows beyond 1.0, the impact on PSNR becomes more no-
ticeable, while SSIM and LPIPS—metrics that align better
with human visual perception—remain less affected. This
suggests that our method exhibits tolerance for erroneous ini-
tial points, maintaining stable performance while revealing
rich high-frequency details in the output.

PSNR 1 21.049 21.060 21.045 21.068 21.075
SSIM 1 0.738  0.738  0.738 0.739 0.738
LPIPS | 0.178  0.178  0.178 0.177 0.177

Table 3. The influence of different pre-trained flow estimation
models on the LLFF dataset with 3 input views.

We also quantitatively analyze the quality of the point
clouds generated by state-of-the-art methods such as
DNGaussian, FSGS, and CoR-GS, as shown in the upper half
of Tab. 2. Regardless of whether random or fused stereo ini-
tial point clouds (indicated by an asterisk) are used, DNGaus-
sian, as a lightweight design-focused method, consistently
generates fewer points and provides less comprehensive cov-
erage than our approach, even at ¢; = 0.01, resulting in infe-
rior performance. Although FSGS generates more points, its
limited point addition strategy results in lower accuracy and
coverage. Notably, even with a reduced number of points
(e.g., €q = 0.1), our method still outperforms FSGS. As for
CoR-GS, while it generates relatively comprehensive cover-
age, it lacks the ability to produce a dense point cloud. This
limitation is reflected in the point count, ultimately restrict-
ing the reconstruction quality, especially in high-frequency
details. In contrast, NexusGS, with epipolar depth priors,
generates a more accurate, dense, and comprehensive point
cloud, leading to superior reconstruction performance.

3.3. Robustness Across Various Flow Estimators

Inspired by existing approaches [5, 13], which utilize monoc-
ular depth estimators to provide depth priors, we hypothesize
that similar variability in performance might occur when us-
ing different optical flow estimators with varying network
parameters. To explore this possibility, we conduct exper-
iments on the LLFF dataset, comparing the performance
of our method using optical flow estimators trained on five
different datasets. Specifically, we evaluate the chairs, kitti,
sintel, things_288960, and things models of FlowFormer++.
The quantitative results are summarized in Tab. 3. As illus-
trated, despite utilizing different pretrained flow estimation
models, our method consistently shows minimal variations in
PSNR, with SSIM and LPIPS scores remaining nearly iden-
tical across the different models. These results highlight the
robustness of our approach, demonstrating its effectiveness
regardless of the specific optical flow estimator employed.

3.4. Robustness on Varying View Counts

To validate the robustness of our method under varying num-
bers of training views, we conduct experiments on the LLFF
dataset, with results presented in Tab. 4. Our method con-
sistently outperforms all competitors when using 2, 3, and 4
views. Notably, with only 2 training views, COLMAP fails
to generate a fused stereo point cloud, leading to poor perfor-



Method 2 Views 3 Views 4 Views
PSNRT SSIM?T LPIPS| | PSNRT SSIMtT LPIPS| | PSNRT SSIM{ LPIPS|

RegNeRF 16.16 0.396 0.455 19.08 0.587 0.336 20.95 0.689 0.272
FreeNeRF 17.12 0.490 0.364 19.63 0.612 0.308 21.63 0.709 0.253
SparseNeRF 17.51 0.450 0.423 19.86 0.624 0.328 21.09 0.681 0.295
3DGS 12.21 0.282 0.501 18.54 0.588 0.272 16.98 0.563 0.313
DNGaussian | 15.92 0.454 0.391 19.12 0.591 0.294 20.58 0.688 0.253
FSGS 16.09 0.438 0.384 20.43 0.682 0.248 21.93 0.760 0.167
CoR-GS 14.63 0.417 0.423 20.45 0.712 0.196 21.62 0.761 0.163
Ours 19.28 0.659 0.220 21.07 0.738 0.177 22.12 0.774 0.158

Table 4. Quantitative evaluation of the impact of training views on the LLFF dataset.
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Figure 4. Additional visual comparisons on the DTU dataset with 3 input views.

mance by DNGaussian, FSGS, and CoR-GS, which perform
even worse than NeRF-based methods. In contrast, our
method does not suffer from this limitation. By leveraging
the point cloud generated through our approach, we achieve
superior results with just 2 views, effectively overcoming
the constraints of previous 3DGS methods and surpassing
NeRF-based methods across all evaluated metrics.

4. Additional Visual Results

Additional visual results are provided in the supplemen-
tary materials. Specifically, Fig. 3 showcases the results of
our method on the Blender dataset. As shown, our method
achieves a more complete and detailed reconstruction com-
pared to previous approaches. This improvement is attributed
to the accurate geometry provided by the precise point cloud,
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Figure 6. Per-scene visual results on the DTU dataset with 3 input views.

which enables the faithful reconstruction of finer textures.

We also present additional visual results on the DTU
dataset in Fig. 4. It is evident that the results from NeRF-
based methods, constrained by depth priors, are adversely
affected by floaters, leading to degraded reconstruction qual-
ity. This suggests that their depth priors are not well-suited
for object-centered datasets. In contrast, subsequent 3DGS-

based methods that utilize depth priors mitigate the presence
of floaters. However, due to the lack of dense and accu-
rate point clouds, their final reconstructions appear visually
smoother, lacking finer detail.

Furthermore, Figs. 5 and 6 present the results for each test
scene on the LLFF and DTU datasets, respectively. Fig. 7
compares the depth maps of our method and the competitors.
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Figure 7. Visual comparisons of depth maps on the LLFF dataset with 3 input views.

5. Discussion, Limitations, and Future Work

Despite NexusGS’s remarkable performance and generaliz-
ability, it, like most sparse-view synthesis methods, relies
on known camera poses to enforce epipolar constraints. To
evaluate the robustness of our method, we conduct a sensi-
tivity analysis of camera calibration errors, using the SSIM
score as the primary metric, as summarized in Tab. 5. Per-
turbations are introduced to the camera pose along all axes,
resulting in performance degradation across all competitors,
all of which depend on accurate pose information. Severe
overfitting is observed when perturbations reach 0.1. In
contrast, our method demonstrates superior robustness, con-
sistently outperforming others despite pose errors, thanks to

Perturbation | 0 | 0.02 | 0.04 | 0.06 | 0.08 | 0.1

DNGaussian | 0.591 | 0.586 | 0.565 | 0.556 | 0.540 | 0.476
FSGS 0.682 | 0.688 | 0.664 | 0.633 | 0.606 | 0.579
CoR-GS 0.712 | 0.693 | 0.664 | 0.639 | 0.609 | 0.586

Ours | 0.738 | 0.724 | 0.690 | 0.653 | 0.617 | 0.588

Table 5. Sensitivity analysis of calibration errors on the LLFF
dataset with 3 input views using SSIM.

our effective error-handling strategies, FRDB and FFDP.

Although recent pose-free methods, such as COGS [4],
bypass the need for camera poses, the trade-off between flex-
ibility and rendering accuracy leaves room for improvement,
offering a promising avenue for future work.
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