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A. Dataset Construction
We create a large-scale panoramic dataset, 360SPR, for not
only the Scene-agnostic Pose Regression but also other vi-
sual localization tasks, such as Absolute Pose Regression
and Relative Pose Regression. Leveraging the Habitat sim-
ulator [16, 20, 23] powered by HM3D [17] and Matter-
port3D [3] datasets, we sample over 3.6M pinhole images
with corresponding camera poses and depth images dis-
tributed in 270 different scenes. 180 scenes come from
HM3D [17] and the rest scenes are from Matterport3D [3].
For the sake of obtaining panoramas, we use the same
stitching tool as Matterport3D [3] to stitch pinholes into
panoramas.

As shown in Fig. 1, for every sample point in the trajec-
tories, we collect images with 6 headings and 3 elevations,
resulting in 18 pinhole images. Each pinhole image has a
60◦ horizontal and vertical field of view in 512×512. As
for the heading and elevation, they are also 60◦, resulting
in 360◦ horizontal and 180◦ vertical field-of-view stitched
panoramic images. Referring to the camera pose of the i-th
panorama along a trajectory, we leverage the face direction
from the (i−1)-th sample point pointing to the i-th sam-
ple point, which is also the pose of the 10-th pinhole image
in the pinhole image sequence of the i-th panorama. We
also randomly add a heading offset ranging from −60◦ to
60◦ to the panoramic camera poses for diversity. To enable
high-quality panoramic images, three inspectors manually
checked all samples in the form of cross-validation. The
whole cleaning process took more than 300 hours.

As for the trajectory selection, we randomly select two
points as the starting and destination points within a naviga-
ble area of a scene. Then we calculate the shortest path be-
tween the two points using the Dijkstra [8] algorithm. Since
the 360Loc dataset [12] doesn’t consider different sampling
intervals and sensor heights, it’s difficult to satisfy the need
for robust and accurate spatial awareness in various real-
world applications. To this end, we sample trajectories in
different lengths with varying sampling intervals between
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Figure 1. One panorama is stitched by 18 pinholes with 6 head-
ings and 3 elevations. The numbers in white represent the image
indices in the sequence.

Table 1. Model specifications of SPR-Mamba.

Branch Block Block Num. Input Dim. Hidden Dim. Hidden States Output Dim.

Feature Extractor DINOv2s 1 - - - 384
Local Branch Linear 12 384 768 - 384
Global Branch Mamba 12 384 768 16 384
Translation Head Linear 1 384 - - 3
Rotation Head Linear 1 384 - - 3

sampling points along the path. The trajectory length in
360SPR varies from 3m to 20m and the number of panora-
mas in one trajectory varies from 5 to 20.

Moreover, three different robot heights with a sampling
ratio of 1:1:2 are also taken into account, i.e., sweeping ( ),
quadruped ( ), and humanoid ( ) robots. Note that one
trajectory corresponds to one robot’s height rather than a
mixture of three different heights.

B. More Implementation Details
We train the SPR-Mamba model from scratch without any
pretraining except for a frozen DINO [2] as the feature ex-
tractor. The SPR-Mamba is trained with an A100 GPU for
150 epochs. The AdamW [14] optimizer is applied with an
initial learning rate of 1e−4. The training is warmed by a
linear scheduler for the first 10 epochs followed by a cosine
annealing strategy. To facilitate the training and inference,



Table 2. Comparison of different models using different paradigms in both seen and unseen environments on the 360SPR dataset. The
average median and average mean of Translation Error (TE in meters) and Rotation Error (RE in degrees) are reported.

Paradigm Model Source Code #Image Average Median Average Mean
TE (seen) TE (unseen) RE (seen) RE (unseen) TE (seen) TE (unseen) RE (seen) RE (unseen)

APR
AnchorPoint [19] BMVC link ë×1 10.11±0.4 29.44±0.9 10.11±0.5 46.66±1.2 10.14±0.2 28.23±0.8 10.51±0.2 47.13±1.3

MS-Transformer [21] ICCV link ë×1 10.22±0.4 30.35±1.2 10.11±0.3 47.65±0.9 10.16±0.3 29.37±1.1 10.65±0.2 48.32±1.3
DFNet [4] ECCV link ë×1 3.87±0.4 28.35±0.7 3.69±0.6 47.84±1.0 3.92±0.2 28.33±0.7 3.75±0.2 47.53±1.2

RPR
RelocNet [1] ECCV link ë×1 10.55±0.5 12.45±0.2 10.21±0.4 21.42±0.2 10.33±0.3 11.42±0.3 10.64±0.5 21.19±0.4
Ess-Net [26] ICRA link ë×1 10.12±0.3 12.54±0.5 9.87±0.4 21.44±0.4 10.76±0.3 11.52±0.3 10.21±0.2 21.48±0.3

Relpose-GNN [25] 3DV link ë×1 10.19±0.4 11.92±0.4 9.62±0.4 21.27±0.2 10.26±0.2 11.44±0.6 10.51±0.5 21.33±0.6

SPR SPR-Mamba (ours) CVPR link ì×5 3.32±0.3 3.85±0.3 3.43±0.3 3.97±0.4 3.22±0.2 3.78±0.4 3.31±0.3 3.91±0.3

Table 3. Comparison of different models using different paradigms in both seen and unseen environments on the 360Loc dataset. The
average median and average mean of Translation Error (TE in meters) and Rotation Error (RE in degrees) are reported.

Paradigm Model Source Code #Image Average Median Average Mean
TE (seen) TE (unseen) RE (seen) RE (unseen) TE (seen) TE (unseen) RE (seen) RE (unseen)

APR
AnchorPoint [19] BMVC link ë×1 8.16±0.3 27.25±1.3 8.15±0.3 44.52±1.4 8.27±0.2 26.12±1.1 8.35±0.2 45.11±1.7

MS-Transformer [21] ICCV link ë×1 8.31±0.2 28.45±1.5 8.27±0.2 45.76±1.2 8.33±0.1 27.31±1.2 8.44±0.3 46.41±1.6
DFNet [4] ECCV link ë×1 1.85±0.4 26.22±0.8 1.77±0.6 45.62±1.1 1.95±0.2 26.44±0.8 1.95±0.3 45.89±1.0

RPR
RelocNet [1] ECCV link ë×1 8.65±0.3 10.73±0.3 8.01±0.3 19.51±0.2 8.62±0.3 9.98±0.4 8.24±0.4 19.55±0.3
Ess-Net [26] ICRA link ë×1 8.57±0.2 10.43±0.4 7.92±0.2 19.67±0.2 8.51±0.2 9.74±0.2 8.15±0.4 19.32±0.4

Relpose-GNN [25] 3DV link ë×1 8.02±0.3 9.98±0.2 7.77±0.4 19.45±0.4 8.22±0.4 9.82±0.4 8.01±0.2 19.02±0.2

SPR SPR-Mamba (ours) CVPR link ì×5 1.43±0.3 1.94±0.3 1.21±0.2 1.44±0.2 1.23±0.3 1.87±0.3 1.17±0.3 1.28±0.2

we resize the panoramic images to 320×640 for the 360SPR
and 392×770 for the 360Loc dataset [12]. SPR-Mamba is
trained with a sequence length of 5 images and uses the last
one as the query image. Applying a batch size of 8 results
in 40 images within a batch.

Table 1 lists the model specification of SPR-Mamba. We
utilize DINOv2s [2, 15] as the feature extractor. As for the
Linear layer in the local branch, we stack 12 Linear layers
where the hidden layer dimension is twice as large as the in-
put and output dimensions. We also stack 12 Mamba blocks
in the global branch where the expand ratio is 2 with 16 hid-
den states. The Mamba [7, 11] blocks are tailored to handle
more global contextual information, with the expansion ra-
tio helping to enlarge the model capacity and improve over-
all performance.

C. More Quantitative Results

C.1. More Results on 360SPR

In addition to the comparison with other state-of-the-art
baselines in the main paper, we provide more quantitative
comparisons in this section. Table 2 compares SPR-Mamba
with more baselines in both seen and unseen environments
on the 360SPR dataset. It can be observed that SPR-Mamba
surpasses other methods, achieving an average reduction of
8m/17◦ ↓ in median translation and rotation errors in un-
seen environments. This result is also consistent with the
result in our main paper.

Table 4. Results in unseen environments on pinhole datasets
7Scenes and 360SPR pinhole subset.

Paradigm Model Source 7Scenes (Pinhole) 360SPR (Pinhole)
TE (m)↓ RE (°)↓ TE (m)↓ RE (°)↓

APR Marepo [5] CVPR 2.02±0.3 3.54±0.3 9.53±0.3 11.31±0.3

RPR FAR [18] CVPR 1.83±0.3 3.22±0.4 9.03±0.2 10.98±0.2

VO
DPVO [24] NeurIPS 0.66±0.3 1.54±0.3 4.33±0.4 5.21±0.3

LEAP-VO [6] CVPR 0.73±0.3 1.77±0.3 4.47±0.4 5.51±0.4
XVO [13] ICCV 0.70±0.1 1.69±0.4 4.55±0.3 5.33±0.4

SPR SPR-Transformer (ours) CVPR 0.44±0.3 1.23±0.4 4.04±0.4 5.01±0.2
SPR-Mamba (ours) CVPR 0.40±0.3 1.21±0.3 3.96±0.3 4.89±0.2

C.2. More Results on 360Loc

We also compare SPR-Mamba with more baselines in both
seen and unseen environments on the 360Loc dataset [12].
The results are reported in Table 3. It can be observed that
SPR-Mamba surpasses other methods, achieving an average
reduction of 8m/18◦ ↓ in median translation and rotation
errors in unseen environments. Models trained in the APR
paradigm are still not able to work in unknown environ-
ments. The results on the 360SPR and 360Loc [12] datasets
prove the effectiveness of our proposed SPR paradigm in
predicting accurate and robust camera poses in unknown
environments.

C.3. Results on Pinhole Datasets

Table 4 showcases the results on two pinhole datasets,
namely 7Scenes [10, 22] and 200K-pinhole subset of
our 360SPR. Thanks to our model design and SPR
paradigm, SPR-Mamba performs consistently well on pin-
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Table 5. Ablation study of SPR-Mamba at different sensor heights (0.1m , 0.5m , 1.7m ) in both seen and unseen environments
on the 360SPR dataset. The average median and mean of Translation Error (TE in meters) and Rotation Error (RE in degrees) are reported.

Height Average Median Average Mean
TE (seen) TE (unseen) RE (seen) RE (unseen) TE (seen) TE (unseen) RE (seen) RE (unseen)

3.33±0.3 3.88±0.2 3.24±0.2 3.97±0.3 3.56±0.3 3.77±0.4 3.48±0.3 3.68±0.3
3.29±0.2 3.93±0.2 3.31±0.2 4.01±0.2 3.65±0.3 3.88±0.4 3.44±0.3 3.74±0.3
3.32±0.3 3.78±0.3 3.27±0.3 3.86±0.3 3.35±0.3 3.76±0.2 3.33±0.3 3.85±0.2
3.11±0.2 3.46±0.3 3.33±0.4 3.78±0.4 3.44±0.2 3.69±0.3 3.21±0.2 3.88±0.3
3.10±0.2 3.55±0.3 3.67±0.3 3.69±0.3 3.40±0.2 3.99±0.4 3.24±0.3 3.87±0.4
3.62±0.3 3.66±0.3 3.51±0.3 3.88±0.3 3.30±0.3 3.82±0.2 3.42±0.3 3.77±0.4
3.32±0.3 3.85±0.3 3.43±0.3 3.97±0.4 3.22±0.2 3.78±0.4 3.31±0.3 3.91±0.3

Table 6. Ablation study of SPR-Mamba and TSformer-VO with different sequence lengths in both seen and unseen environments on
the 360Loc dataset. The average median and mean of Translation Error (TE in meters) and Rotation Error (RE in degrees) are reported.

Model #Image Average Median Average Mean
TE (seen) TE (unseen) RE (seen) RE (unseen) TE (seen) TE (unseen) RE (seen) RE (unseen)

TSformer-VO [9] ë×5 2.07±0.3 2.21±0.3 1.59±0.3 1.78±0.3 2.11±0.3 2.32±0.2 1.55±0.2 1.81±0.3
SPR-Mamba ë×5 1.43±0.3 1.94±0.3 1.21±0.2 1.44±0.2 1.23±0.3 1.87±0.3 1.17±0.3 1.28±0.2

TSformer-VO [9] ë×10 2.56±0.2 2.82±0.3 2.77±0.2 2.91±0.2 2.61±0.3 2.79±0.3 2.81±0.2 2.92±0.2
SPR-Mamba ë×10 2.07±0.2 2.20±0.2 2.21±0.2 2.43±0.3 2.15±0.3 2.22±0.3 2.25±0.4 2.51±0.2

TSformer-VO [9] ë×15 3.05±0.2 3.21±0.2 3.01±0.3 3.14±0.3 3.14±0.3 3.33±0.4 3.12±0.2 3.20±0.2
SPR-Mamba ë×15 2.44±0.3 2.62±0.3 2.42±0.2 2.65±0.2 2.50±0.3 2.68±0.3 2.52±0.3 2.70±0.3

TSformer-VO [9] ë×20 3.44±0.2 3.69±0.3 3.33±0.3 3.57±0.3 3.58±0.3 3.75±0.2 3.50±0.2 3.69±0.2
SPR-Mamba ë×20 2.65±0.3 2.89±0.2 2.71±0.3 2.93±0.2 2.60±0.3 2.90±0.2 2.88±0.3 3.10±0.2

Table 7. Results in unseen environments on pinhole 360SPR pin-
hole subset and panoramic 360SPR with less overlap.

Paradigm Model Source 360SPR (Pinhole) 360SPR (Panoramic)
TE (m)↓ RE (°)↓ TE (m)↓ RE (°)↓

VO
DPVO [24] NeurIPS 5.53±0.3 6.33±0.2 5.04±0.3 5.55±0.4

LEAP-VO [6] CVPR 5.47±0.2 6.27±0.3 5.02±0.3 5.78±0.3
XVO [13] ICCV 5.55±0.2 6.35±0.3 5.09±0.3 5.65±0.3

SPR SPR-Mamba (ours) CVPR 4.33±0.3 5.47±0.2 4.03±0.2 4.23±0.3

hole datasets, as compared to APR, RPR, and VO. More-
over, we also compare our model with different architec-
tures in Table 4, namely Transformer-based and Mamba-
based models. Besides the lower computational complexity,
Mamba achieves better performance.

C.4. Results of Less Overlap

To test less overlapping cases, we further conduct experi-
ments by removing a few frames within a sequence. Ta-
ble 7 lists results in unseen environments on 200K-pinhole
subset of 360SPR and panoramic 360SPR with less overlap.
Our method consistently outperforms other VO methods on
pinhole and panoramic datasets. It’s worth noting that the
performance on the panoramic dataset is better than the one

on the pinhole dataset since panoramas provide more over-
lap and visual information compared to the pinhole images.

C.5. Ablation Study

Ablation on sensor height. We perform a comprehen-
sive ablation study to evaluate the impact of varying sensor
heights on the performance of our SPR-Mamba model. Ta-
ble 5 presents a detailed comparison of the model’s perfor-
mance under the combination of three distinct sensor height
configurations: 0.1 meters , 0.5 meters , and 1.7 me-
ters . Unlike the ablation study of cross-sensor evaluation
in the main paper, the model is trained and evaluated at the
same height with a sequence length of 5 images in this abla-
tion study. The results demonstrate that SPR-Mamba main-
tains consistently high performance across all sensor height
combinations. This consistency underscores the robustness
of our model. Such findings highlight SPR-Mamba’s poten-
tial for deployment in diverse environments and scenarios.
Ablation on sequence length. We conduct an ablation
study on image sequence length. Different from the abla-
tion on VO comparison in the main paper, where we use
the same model in two different paradigms, namely VO and
SPR, we leverage two models in the same SPR paradigm in



this ablation study. The analysis presented in the main pa-
per investigates the differences between VO and SPR across
various sequence lengths. In contrast, this ablation study
focuses specifically on exploring the performance differ-
ences among models in the SPR paradigm when subjected
to different sequence lengths ranging from 5 to 20. Table 6
showcases the ablation results. Note that since TSformer-
VO [9] and SPR-Mamba are both trained and evaluated in
the SPR paradigm, there is no accumulated drift in this ab-
lation study. It can be observed that the translation and rota-
tion errors increase as the image sequence becomes longer.
This phenomenon happens both in TSformer-VO [9] and
SPR-Mamba. However, our SPR-Mamba consistently out-
performs TSformer-VO [9] in all sequence-length settings
in both seen and unseen environments. This remarkable
superiority proves that although extended sequence lengths
have the potential to degrade model performance in the SPR
paradigm, this challenge is not insurmountable. By em-
ploying thoughtful architectural design, as demonstrated by
SPR-Mamba, it is possible to effectively alleviate the nega-
tive impact of long sequences.

D. Samples from 360SPR

When using pinhole images, substantial changes in the
viewpoint, e.g., 180◦ rotation, may result in insufficient
overlap, which is important for Relative Pose Regression
and Scene-agnostic Pose Regression. In contrast, panora-
mas guarantee sufficient overlap and similarity since they
provide 360◦ field of view. Fig. 2 showcases some data
samples from the 360SPR dataset. We respectively pick 5
images from 2 trajectories in 2 scenes for illustration. It
can be observed that two consecutive adjacent panoramas
provide sufficient overlap and similarity to train an accurate
and robust pose regression model.

E. Limitation and Future Work

While Scene-agnostic Pose Regression is capable of pre-
dicting precise camera poses in unfamiliar environments,
these poses are defined relative to the origin frame, with no
information provided regarding the absolute poses. 360SPR
is a large-scale panoramic dataset for visual localization
tasks. It contains panoramas, pinholes, and depth images
with camera poses captured at 3 different sensor heights
distributed in 270 scenes. In order to satisfy the need for
other computer vision tasks beyond visual localization, it’s
necessary to enrich the 360SPR dataset with more modal-
ities, e.g., segmentation maps. Although panoramas pro-
vide more visual cues compared with pinholes, image dis-
tortion occurs due to the spherical projection. We plan to
enhance SPR-Mamba’s ability to manage image distortions
in panoramas in future work. Furthermore, given the rapid
advancement of Large Language Models(LLMs), exploring

the integration of multi-modal LLMs presents an increas-
ingly promising and exciting direction for future research.



Figure 2. Samples from 360SPR. We respectively pick 5 images from 2 trajectories in 2 scenes for illustration.
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