
Task-Agnostic Guided Feature Expansion for Class-Incremental Learning

Supplementary Material

7. Additional Related Works

In Section 2, we discuss related works closely related to

this work. Here we provide some additional related works

in CIL. Rehearsal memory is used to store exemplars of

previous tasks and replay at follow-up tasks. It makes the

learned feature less forgetful by adjusting the input distribu-

tion towards the learned tasks. Many works focus on how

to select exemplars [27, 34, 41, 50]. Exemplars can also be

obtained by generative models [40].

Regularization methods [22, 39, 61] come from various

ideas. [22] proposes to restrict the updates of important pa-

rameters. [61] proposes a dual augmentation framework to

make the eigenvalues of the representation’s covariance ma-

trix larger. [39] proposes to make the representation scatter

uniformly, making the representation contains more infor-

mation about the input sample.

Model distillation uses the model trained on previous

tasks as a teacher and distillation losses to keep the previ-

ously learned knowledge in the feature. LwF [25] proposes

to use the response of the old model to guide the training of

the new model’s old tasks. PODNet [9] uses the pooled in-

termediate feature maps of the ResNet to be the distillation

target in training.

Pre-Trained Model-based methods leverage pretrained

models and adapt the model for class-incremental learn-

ing [47–49]. [49] uses visual prompt tuning [21] to learn

a prompt for each task. [48] proposes the dual prompt

scheme in ViT. Due to the head start of the pre-trained mod-

els in learning representations, these methods outperform

the methods which train the model from scratch, even with-

out the rehearsal memory samples.

Other perspectives to boost CIL are also considered. In

the parameter space, [31] studies the linear mode connec-

tivity in CIL and proposes to enhance the linear mode con-

nectivity between learned models. [26] also considers the

linear mode connectivity between learned models and pro-

poses to combine two models learned in different ways to

get better linear mode connectivity.

[7] uses Grad-CAM to generate attention maps for dis-

tillation. [13] generates adversarial samples iteratively to

perform drift estimation for old class prototypes. [36] lever-

ages the part information of the images, forming prototypi-

cal part layers on the model, improving the interpretability

of the model. [56] proposes a locality-preserving attention

module to remedy the locality degradation during the train-

ing of CIL. [57] considers enlarging the all-layer margin on

the rehearsal samples, applying feature augmentations by

input gradients.

8. More Implementation Details

In Section 5.1, we describe the experiment settings for the

experiment section. Here we provide more implementation

details. We provide more configurations about TagFex in

Table 7. We use the same configurations for CIFAR and

ImageNet unless additional specification. We use AutoAug-

ment [5] for creating augmented samples in the training of

the task-agnostic model. We perform our experiments on

a server with 4 RTX3090 GPUs. For the pruning thresh-

old, we adaptively choose the threshold according to the

expected compression rate 0.4.

9. Performance Results with Standard Devia-
tions.

In Section 5.2, we compare the performance of TagFex with

some baselines. Here, we provide performance results on

CIFAR100 and ImageNet100 with standard deviations of 5

runs in Table 8.

10. Comparison for the Number of Parameters

In Section 5.2 and Table 1, we provide the performance

results of pruned TagFex-P on various scenarios, and de-

scribe the efficacy on reducing the number of parameters.

Here, we provide detailed comparison for the average num-

ber of parameters of the inference model. It is shown in Ta-

ble 5. We compare the average incremental number of pa-

rameters for inference, which the values are averaged across

each stages. As we can see, TagFex holds the same number

of parameters as DER. With pruning techniques, TagFex-P

requires less number of parameters to achieve comparable

performance.

Table 5. Comparison for number of parameters. Values are shown

in millions.

Methods
CIFAR100 ImageNet100

10-10 50-10 10-10 50-10

iCaRL [34] 0.46 0.46 11.2 11.2

BiC [50] 0.46 0.46 11.2 11.2

DyTox [10] 10.7 - 11.0 -

DER [51] 61.6 39.2 61.6 39.2

TagFex 61.6 39.2 61.6 39.2

TagFex-P 11.6 9.8 14.4 11.3



(a) Task 1 Epoch 0 (b) Task 1 Epoch 60 (c) Task 1 Epoch 120 (d) Task 1 Epoch 160

(e) Task 2 Epoch 0 (f) Task 2 Epoch 60 (g) Task 2 Epoch 120 (h) Task 2 Epoch 160

(i) Task 4 Epoch 0 (j) Task 4 Epoch 60 (k) Task 4 Epoch 120 (l) Task 4 Epoch 160

(m) Task 6 Epoch 0 (n) Task 6 Epoch 60 (o) Task 6 Epoch 120 (p) Task 6 Epoch 160

Figure 8. More visualizations on merge attention maps.

11. CKA Similarities of Learned Features in
Expansion-based Methods

In Section 1, we compare the average CKA similarities

of the learned features in expansion-based methods. Here

we show the detailed numbers for the CKA similarities be-

tween each expanded feature. The results are shown in Fig-

ure 9, from which we can conclude that the features ex-

tracted by the models learned by DER are relatively similar,

with maximum CKA 0.48 and minimum 0.27, especially

when comparing to TagFex, with maximum 0.34 and mini-

mum 0.14.

12. More Visualizations on Merge Attention
Maps

In Section 5.4, we discuss the evolution of the merge atten-

tion maps for TagFex. Here we provide more visualizations

on merge attention maps in Figure 8. As we can see from

the figures, in each incremental task, the high attention val-

ues are first on the task-agnostic side, and then transfer to

the task-specific side, which represents task-agnostic fea-

tures are useful for the task at early epochs, and such infor-

mation is absorbed by the task-specific model. In addition,

for later tasks (task 6 in the figure, sub-figure (m)(n)(o)(p)),

the attention on the task-agnostic side at the end of the task

is not as small as previous tasks (sub-figure (d)(h)(l)). It in-

dicates that the task-agnostic model contains more and more

features during the continual self-supervised learning.

13. Performance Experiments on Fine-grained
Dataset

To verify the performance gain of TagFex on fine-grained

datasets, we perform experiments on CUB200 100-20 with

memory size 2000. The results are shown in Table 6, which

shows strong performance gain over DER.

Table 6. Performance results on CUB200. TagFex outperforms

DER on such fine-grained dataset.

Methods
CUB200 100-20

Avg Last

DER 53.07 52.88

TagFex 56.56 54.37



(a) CKA feature similarities between each model learned by DER. (b) CKA feature similarities between each model learned by TagFex.

Figure 9. CKA feature similarities. Features learned by TagFex are more diverse and less correlated.

Table 7. More implementation details for TagFex.

General Configurations Task-Agnostic Model

Base Epochs 200 InfoNCE Temperature τ 0.2

Incremental Epochs 170 Projection Hidden Dim. 2048

Batch Size 128 Projection Embedding Dim. 1024

Learning Rate 0.1 Predictor Linear

Merge Attention # of heads 8 Transferring Temperature 2

Table 8. Performance results on CIFAR100 and ImageNet100 with standard deviations.

Datasets Methods
10-10 50-10

Last Avg Last Avg

CIFAR100

DER 64.35±0.11 75.36±0.06 65.27±0.10 72.60±0.05

TagFex 68.23±0.13 78.45±0.06 70.33±0.13 75.87±0.06

TagFex-P 67.34±0.18 78.02±0.10 69.26±0.15 74.24±0.08

ImageNet100

DER 66.71±0.16 77.18±0.08 71.08±0.11 77.71±0.06

TagFex 70.84±0.19 79.27±0.11 75.54±0.11 80.64±0.07

TagFex-P 69.21±0.17 78.56±0.10 74.13±0.12 79.85±0.07


