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Figure 7. (a) Intel RealSense D455 camera [15]. (b) Calibration
board used to align camera reference frame with OptiTrack’s rigid
body frame. (c) Static scene 1. (d) Static scene 2.

Abstract

In the supplementary material, we provide additional details
about the following:
1. More information about the Wild-SLAM dataset (Sec. 6).
2. Implementation details of WildGS-SLAM and baseline

methods (Sec. 7).
3. Additional results and ablations (Sec. 8).

6. Wild-SLAM Dataset

Wild-SLAM MoCap Dataset. This dataset comprises a
total of 10 sequences of RGB-D frames featuring various
moving objects as distractors, specifically designed for dy-
namic SLAM benchmarking. Although WildGS-SLAM
works with monocular inputs, aligned depth images are in-
cluded to support the evaluation of other RGB-D baselines
or future research. The RGB-D frames were captured using
an Intel RealSense D455 camera (Fig. 7a) at a resolution of
720× 1280 and a frame rate of 30 fps. All image sequences
in this dataset were recorded with a fixed exposure time. The
dataset includes two distinct static environment layouts: 2
sequences were captured in one static scene (Fig. 7c), and the
remaining 8 sequences were recorded in the other (Fig. 7d).
A summary of each sequence is provided in Table 6, while
all sequences are presented in the video. The room used for
dataset collection was equipped with an OptiTrack motion
capture (MoCap) system [34], consisting of 32 OptiTrack
PrimeX-13 cameras, to provide the ground truth camera
poses. The OptiTrack system operates at 120 fps.

Inspired by [65], to synchronize the OptiTrack system

with the Intel RealSense D455 camera, we positioned the
RealSense camera and one of the OptiTrack cameras to ob-
serve an iPhone. By switching the iPhone flashlight on and
off, we identified the corresponding timestamps in the im-
ages captured by both devices that reflected the flashlight’s
state change. This allowed us to get the timestamp offset
between the two devices. To improve synchronization ac-
curacy, the frame rate of the D455 was increased to 60 fps.
We switched the flashlight on and off before and after each
sequence recording, obtaining four timestamp offset values.
The timestamp offset per recording was calculated as their
average. Across all sequences, the average standard devia-
tion among the four timestamp offset values was 5.25 ms,
while the time interval between consecutive frames in the
captured sequence is 33.33 ms, highlighting the precision of
the synchronization.

To track the pose of the D455 camera using the MoCap
system, we attached four reflective markers to the camera,
defining a rigid body. We then performed a calibration pro-
cedure using a calibration board (Fig. 7b) to determine the
relative transformation between the MoCap coordinate sys-
tem and the camera coordinate system for this rigid body.
Four reflective markers were carefully placed on the cali-
bration board, enabling the MoCap system to track their 3D
positions. These positions were then utilized to compute the
locations of the grid corners on the board. Meanwhile, the
corresponding 2D pixel coordinates of these grid corners
in the camera frame were identified using the method de-
scribed in [6]. Using this information, the camera poses in
the MoCap coordinate system were determined, allowing us
to compute the transformation between the rigid body and
the camera frame. The calibration process was repeated 19
times, with the camera and the calibration board positioned
in different poses for each trial, resulting in 19 transforma-
tion matrices. The final transformation between the rigid
body and the camera frame was computed by averaging the
results across all trials. Specifically, the rotation component
was averaged using the chordal L2 method [10]. The average
deviation between an individual estimated transformation
matrix and the final averaged transformation is 0.44◦ for
rotation and 0.24 cm for translation.
Wild-SLAM iPhone Dataset. To further assess performance
in more unconstrained, real-world scenarios, we captured 7
sequences using an iPhone 14 Pro. These sequences com-
prise 4 outdoor and 3 indoor scenes, showcasing a variety of
daily-life activities such as strolling along streets, shopping,
navigating a parking garage, and exploring an art museum.
Each sequence provides RGB images at a resolution of 1920
× 1280, accompanied by LiDAR depth images at 256 × 192



Sequence Name Distractors Static Environment Number of Frames Length of Trajectory [m]

ANYmal1 ANYmal Robot Scene 1 651 7.274
ANYmal2 ANYmal Robot Scene 1 1210 11.567
Ball Human, Basketball Scene 2 931 11.759
Crowd Human, Basketball, Bag Scene 2 1268 14.189
Person Human Scene 2 986 10.354
Racket Human, Racket Scene 2 962 12.421
Stones Human, Table, Bag, Gripper, Stone Scene 2 962 12.421
Table1 Human, Table, Gripper, Stone Scene 2 561 6.592
Table2 Human, Table, Gripper, Stone Scene 2 1029 11.184
Umbrella Human, Umbrella Scene 2 458 4.499

Table 6. Overview of our WildGS-SLAM MoCap Dataset.

resolution. While WildGS-SLAM only requires monocular
inputs, the inclusion of LiDAR data facilitates the evaluation
of RGB-D baselines and future research. All sequences are
showcased in the supplementary video.

Discussion. Both datasets capture humans performing ac-
tivities. The Wild-SLAM MoCap Dataset was recorded in
controlled environments, with explicit consent obtained from
all participants for publishing, presenting, and sharing the
data with the research community. In contrast, the Wild-
SLAM iPhone Dataset was captured in more unconstrained
settings, where we had less control over the presence of
bystanders in the scene. While consent was obtained from
the primary individuals featured, additional people may oc-
casionally appear in the background. In most cases, these
individuals are positioned too far from the camera to be
identifiable (occupying very few pixels). Additionally, in
the Parking sequence, certain car license plates are visible.
To ensure privacy, all sensitive regions, including faces and
license plates, have been masked in the data. It is important
to note that recordings were conducted in locations where
capturing people in public spaces is legally permitted, pro-
vided the footage does not target individuals in a way that
could be considered intrusive or harassing.

7. Implementation Details

7.1. WildGS-SLAM

Two-Stage Initialization. We use the first 12 keyframes
to run the DBA layer for tracking initialization. However,
the uncertainty MLP P has not yet been trained to identify
uncertain regions. Hence, we deactivate the uncertainty
weight β in Eq. (5) during the first stage of initialization to
obtain coarse camera poses. These initial poses are used
for map initialization and training of P . Subsequently, we
perform a reduced number of iterations in the DBA layer,
with uncertainty weighting activated, to refine the coarse
keyframe camera poses from the first stage.
Frame Graph Management. We manage the frame graph
as in [47] but enforce the insertion of a new keyframe every 8

frames, independent of the criterion in [47] (average optical
flow to the last keyframe larger than a threshold).
Disparity Regularization Mask M . For each newly
inserted keyframe i, we project each of its connected
keyframes j in the frame graph, i.e., (i, j) ∈ E, onto i us-
ing the metric depth D̃j and calculate the multi-view depth
consistency count as:

ni(u, v) =
∑

j|(i,j)∈E

1

(
|D̃i(u, v)− D̃j→i(u

′, v′)|
D̃j→i(u′, v′)

< ϵ

∧ cos
(
Fi (u, v) , Fj

(
u′, v′

))
> γ

) (8)

where 1 (·) is the indicator function, (u′, v′) is the pixel co-
ordinate in jth frame that falls to (u, v) when re-projected to
frame i using D̃j , ωi and ωj , D̃j→i(u

′, v′) is the projected
depth from point (u′, v′) to frame i, and ϵ is the relative
depth threshold. The second condition is to filter out in-
correct correspondences that have lower than a threshold γ
DINO feature cosine similarity. The depth mask Mi(u, v) is
set to 0 if (u, v) has more than one valid correspondence in
neighboring frames and ni(u, v) is less than a threshold.
Final Global BA. After processing all the input frames, we
incorporate a final global Bundle Adjustment (BA) module,
similar to DROID-SLAM [47], to refine the keyframe poses.
The frame graph construction follows the same approach as
DROID-SLAM [47]. For the DBA objective during tracking,
we retain only the first term of Eq. (5), omitting the disparity
regularization term, as sufficient multiview information is
already available, and the uncertainty map has converged to
a stable state. We include an ablation study in Sec. 8.
Final Map Refinement. After the final global BA, we per-
form a final refinement of the map using all keyframes,
following the same strategy as Splat-SLAM [39] and
MonoGS [30]. In the final refinement, we fix the keyframe
poses and optimize both the uncertainty MLP and 3D Gaus-
sian map using Eq. (6).
Obtaining Non-keyframe Pose. After completing the final
global BA and map refinement, we conduct a motion-only
bundle adjustment to estimate non-keyframe poses, similar
to the approach in DROID-SLAM [47]. During this opti-



Method Input Type Dynamic Open Source Prior Free Scene Representation

Classic SLAM methods
DSO [7] RGB ✗ ✓ ✓ Sparse Point Cloud
ORB-SLAM2 [32] RGB ✗ ✓ ✓ Sparse Point Cloud
DROID-SLAM [47] RGB ✗ ✓ ✓ -
Classic SLAM methods with dynamic environment handling
Refusion [36] RGB-D ✓ ✓ ✓ TSDF
DynaSLAM (RGB) [2] RGB ✓ ✓ ✗(S) Sparse Point Cloud
DynaSLAM (N+G) [2] RGB-D ✓ ✓ ✗(S) Sparse Point Cloud
Static neural implicit and 3DGS SLAM methods
NICE-SLAM [68] RGB-D ✗ ✓ ✓ Neural Implicit
MonoGS [30] RGB/RGB-D ✗ ✓ ✓ 3D Gaussian Splatting
SplatSLAM [39] RGB ✗ ✓ ✓ 3D Gaussian Splatting
Concurrent neural implicit and 3DGS SLAM methods for dynamic scenes
DG-SLAM [54] RGB-D ✓ ✗ ✗(S) 3D Gaussian Splatting
RoDyn-SLAM [16] RGB-D ✓ ✗ ✗(S) Neural Implicit
DDN-SLAM [27] RGB/RGB-D ✓ ✗ ✗(O) Neural Implicit
DynaMoN (MS) [40] RGB ✓ ✓ ✓ Neural Implicit
DynaMoN (MS & SS) [40] RGB ✓ ✓ ✗(S) Neural Implicit
Recent feed-forward methods
MonST3R [61] RGB ✓ ✓ ✓ Dense Point cloud
WildGS-SLAM (Ours) RGB ✓ ✓* ✓ 3D Gaussian Splatting

Table 7. Overview of Baseline Methods. ‘Dynamic’ indicates whether the method explicitly addresses dynamic scenes. ‘Open Source’
specifies if a public implementation is available. ‘Prior Free’ refers to not using class priors, where ‘O’ represents object detection and ‘S’
denotes semantic segmentation. In all our experiments, we employ the RGB mode of MonoGS [30].

mization, we also deactivate the disparity regularization term
in Eq. (5). These poses are further refined using an L1 RGB
re-rendering loss, as employed in MonoGS [30], weighted
by the uncertainty map.

7.2. Baseline Details
The characteristics of all baseline methods are presented in
Table 7. Here we detail the source of each baseline method’s
results tabulated in the main paper and include the imple-
mentation details of MonST3R-SW (our sliding window
extension of MonST3R [61]).
Details for Table 3. For tracking performance on the
Bonn RGB-D Dynamic Dataset [36], results for ORB-
SLAM2 [32], NICE-SLAM [68], and DDN-SLAM [27] are
taken from the DDN-SLAM [27] paper. Results for DROID-
SLAM [47] are taken from the DynaMoN [40] paper. Re-
sults for DynaSLAM (N+G) [2] and ReFusion [36] are taken
from the ReFusion [36] paper. DG-SLAM [54], RoDyn-
SLAM [16], and DynaMoN [40] are not open-sourced by
the time of submission, therefore we take results from their
own paper. The results for DSO [7], MonoGS [30], Splat-
SLAM [39], and MonST3R-SW [61] are obtained by run-
ning their open-source implementation.
Details for Table 4. For tracking performance on the

TUM RGB-D Dataset [44], results for Refusion [36], DG-
SLAM [54], DynaSLAM (N+G) [2], RoDyn-SLAM [16],
and DDN-SLAM [27] are based on data reported in their
respective papers. Results for ORB-SLAM2 [32], DROID-
SLAM [47], and DynaMoN [40] are sourced from the
DynaMoN [40] paper. For DSO [7], NICE-SLAM [68],
MonoGS [30], Splat-SLAM [39], and MonST3R-SW [61]
results were obtained by running their open-source code.
MonST3R-SW. High VRAM usage is required for
MonST3R [61], making it impractical to process an entire
sequence as input. Instead, we apply a sliding window ap-
proach, merging overlapping frames from consecutive win-
dows to form a complete sequence. Specifically, we use a
window of 30 frames with a stride of 3, as in the original
paper, and maintain an overlap of 25 frames to ensure consis-
tent alignment. We employ Sim(3) Umeyama alignment [48]
to integrate each new window’s trajectory with the global
trajectory.

8. Additional Experiments

Time Analysis. Table 9 presents the average fps of our
method and the baselines. We also provide a fast version
to support more efficient processing with minimal loss of
accuracy by disabling low-impact processes and reducing



Refusion [36] DynaSLAM (N+G) [2] MonoGS [30] Splat-SLAM [39] WildGS-SLAM (Ours) Input
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Figure 8. Input View Synthesis Results on TUM RGB-D Dataset [44]. We show results on the freiburg3_walking_static (first
row) and freiburg3_walking_xyz (second row) sequences. Our method produces substantially better rendering results.

Method f2/dp f3/ss fr3/sx f3/sr f3/shs f3/ws f3/wx f3/wr f3/whs Avg.

RGB-D
Refusion [36] 4.9* 0.9 4.0 13.2* 11.0 1.7 9.9 40.6* 10.4 10.73*
ORB-SLAM2 [32] 0.6 0.8 1.0 2.5 2.5 40.8 72.2 80.5 72.3 30.4
DynaSLAM (N+G) [2] 0.7* 0.5* 1.5 2.7* 1.7 0.6 1.5 3.5 2.5 1.7*
NICE-SLAM [68] 88.8 1.6 32.0 59.1 8.6 79.8 86.5 244.0 152.0 83.6
DG-SLAM [54] 3.2 - 1.0 - - 0.6 1.6 4.3 - -
RoDyn-SLAM [16] - - - - 4.4 1.7 8.3 - 5.6 -
DDN-SLAM (RGB-D) [27] - - 1.0 - 1.7 1.0 1.4 3.9 2.3 -
Monocular
DSO [7] 2.2 1.7 11.5 3.7 12.4 1.5 12.9 13.8 40.7 11.1
DROID-SLAM [47] 0.6 0.5 0.9 2.2 1.4 1.2 1.6 4.0 2.2 1.62
MonoGS [30] 112.8 1.2 6.1 5.1 28.3 1.1 21.5 17.4 44.2 26.4
Splat-SLAM [39] 0.7 0.5 0.9 2.3 1.5 2.3 1.3 3.9 2.2 1.71
DynaMoN (MS) [40] 0.6 0.5 0.9 2.1 1.9 1.4 1.4 3.9 2.0 1.63
DynaMoN (MS&SS) [40] 0.7 0.5 0.9 2.4 2.3 0.7 1.4 3.9 1.9 1.63
DDN-SLAM (RGB) [27] - - 1.3 - 3.1 2.5 2.8 8.9 4.1 -
MonST3R-SW [61] 51.6 2.4 28.2 5.4 36.5 2.2 27.3 13.6 19.8 20.8
WildGS-SLAM (Ours) 1.4 0.5 0.8 2.4 2.0 0.4 1.3 3.3 1.6 1.51

Table 8. Tracking Performance on TUM RGB-D Dataset [44] (ATE RMSE ↓ [cm]). Best results are highlighted as first , second ,
and third . For methods without complete scene coverage in the original reports, results obtained by running their open-source code are
marked with ‘*’. If open-source code is unavailable, scenes without results are marked with ‘-’. DynaSLAM (RGB) [2] consistently fails to
initialize or experiences extended tracking loss across all sequences and therefore cannot be included in this table.

iterations. To be more specific, the modifications involve (i)
removing the calculation of disparity regularization mask;
(ii) optimizing the map G and the uncertainty MLP P every
5 keyframes; (iii) skipping the refinement of non-keyframe
pose via re-rendering loss; (iv) decrease the number of itera-
tions of final map refinement to 3000. As shown in Table 9,
the fast version still outperforms baselines by a clear margin
with comparable runtime.

Rendering Results on TUM RGB-D Dataset [44]. Our
method effectively removes distractors, as illustrated in
Fig. 8. ReFusion [36] struggles to fully eliminate distractors,
leading to the presence of multiple ghosting artifacts. Dy-
naSLAM (N+G) [2] exhibits "black holes" due to insufficient
multiview information for effective inpainting, while the re-
gions it does manage to inpaint often suffer from noticeable

Dataset MonoGS [30] Splat-SLAM [39] Ours-full Ours-fast

FPS ↑ ATE ↓ FPS ↑ ATE ↓ FPS ↑ ATE ↓ FPS ↑ ATE ↓

Wild-SLAM 2.41 47.99 2.44 8.71 0.49 0.46 1.96 0.48
Bonn 2.98 22.80 1.99 - 0.50 2.31 2.13 2.47

Table 9. Running time evaluation. For each dataset, we report the
average FPS and RMSE of ATE [cm]. We logged the total running
time to process a sequence and compute FPS by dividing the total
number of processed frames by the total running time. Ours-full
is the full pipeline presented, while Ours-fast is a fast version of
WildGS-SLAM.

whitish artifacts. MonoGS [30] and Splat-SLAM [39] ex-
hibit blurry and floating artifacts as they do not explicitly
address dynamic environments.

Full Tracking Results on the TUM RGB-D Dataset [44].
We report our performance on the full TUM RGB-D



Sh
op

pi
ng

W
an

de
ri

ng
W

al
l

MonoGS [30] Splat-SLAM [39] WildGS-SLAM (Ours) Input Uncertainty β (Ours) MonST3R [61] Mask

Figure 9. Additional Input View Synthesis Results on our Wild-SLAM iPhone Dataset. Faces are blurred to ensure anonymity.
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Figure 10. High Resolution Uncertainty Map.

Dataset [44] dynamic sequences in Table 8. Our method
performs the best on average.
High Resolution Uncertainty Map. In Fig. 10, we present
the visualization of high-resolution maps, as referenced in
Fig. 5. Achieving higher resolution and sharper uncertainty
maps is possible, though it comes at the cost of computa-
tional efficiency.
More Results on our Wild-SLAM iPhone Dataset. In
addition to the results shown in Fig. 5 of the main paper, we
provide additional results in Fig. 9.
Online Uncertainty Prediction. We visualize the online
uncertainty prediction for frame 215—with MLP trained
before, during, and after the umbrella enters the scene—in
Fig. 11. Before (trained until frame 80), the MLP mainly
classifies the moving human as a moving distractor since
it has never seen the umbrella in the first 80 frames. As
the umbrella enters the scene (frame 215), our uncertainty

fr1/desk fr2/xyz fr3/off Avg.

RGB-D
ORB-SLAM2 [32] 1.6 0.4 1.0 1.0
NICE-SLAM [68] 2.7 1.8 3.0 2.5

Monocular
DROID-SLAM [47] 1.8 0.5 2.8 1.7
MonoGS [30] 3.8 5.2 2.9 4.0
Splat-SLAM [39] 1.6 0.2 1.4 1.1
WildGS-SLAM (Ours) 1.7 0.3 1.4 1.1

Table 10. Tracking Performance on TUM RGB-D Dataset
(Static) [44] (ATE RMSE ↓ [cm]). Best results are highlighted
as first , second , and third . Results for ORB-SLAM2 [32] and
NICE-SLAM [68] are taken from NICE-SLAM [68]. Results
for MonoGS [30] and Splat-SLAM [39] are taken from Splat-
SLAM [39]. The results for DROID-SLAM [47] are obtained
by running their open-source code.

prediction module rapidly identifies it as a moving distractor
due to the inconsistency between the Gaussian map and the
frame 215. Moreover, the uncertainty estimate stabilizes
shortly afterward (frame 451).

RGB (F. 215) Trained until F. 80 Trained until F. 215 Trained until F. 451

Figure 11. Online Uncertainty Prediction.

Pure Static Sequences. To demonstrate the robustness of
our method, we also evaluate it on static sequences from
the TUM RGB-D Dataset [44], shown in Table 10. Our
approach performs on par with state-of-the-art monocular
Gaussian Splatting SLAM methods, such as MonoGS [30]
and Splat-SLAM [39].
Ablation Study on Disparity Regularization. Table 11
presents an ablation study evaluating the effects of (a) the



Disp. Reg.
Mask M

No Disp. Reg.
in Final Global BA

Wild-SLAM Bonn TUM

Before BA After BA Before BA After BA Before BA After BA

(i) ✗ ✗ 3.12 1.95 4.34 2.56 2.17 1.86
(ii) ✓ ✗ 2.90 1.57 3.97 2.56 1.92 1.69
(iii) ✗ ✓ 3.17 0.46 4.40 2.47 2.16 1.55
(iv) ✓ ✓ 2.92 0.46 3.89 2.31 1.94 1.63

Table 11. Ablation Study on Disparity Regularization (ATE RMSE ↓ [cm]). For each dataset, we report the average tracking error before
and after the final global BA. ‘Before BA’ denotes before final global BA. ‘After BA’ denotes after final global BA.

Wild-SLAM Bonn TUM

MonST3R Mask 2.60 2.58 1.80
YOLOv8 + SAM Mask 3.06 2.37 1.65
WildGS-SLAM (Ours) 0.46 2.31 1.63

Table 12. Ablation Study on Distractor Estimation. (ATE RMSE
↓ [cm]). For each dataset, we report the average tracking error.

disparity regularization mask M used in DBA (Eq. (5)) dur-
ing on-the-fly capture and (b) the exclusion of the disparity
regularization term in the final global BA. Removing M
(rows iii and iv) has minimal impact on the final global BA,
as shown in the ‘After BA’ results. However, the ‘Before
BA’ results are significantly degraded, highlighting the multi-
view inconsistencies in monocular predictions. Excluding
the disparity regularization term in the final global BA (rows
ii and iv) has no effect on the ‘Before BA’ results (minor
deviations are expected due to randomness and initialization)
but leads to improved ‘After BA’ performance. This improve-
ment is attributed to the availability of multiple views in the
final global BA, which refines depth accuracy compared to
monocular predictions. The best results are achieved when
M is applied and the disparity regularization term is ex-
cluded during the final global BA (row iv), validating our
design choices.
Ablation Study on Distractor Estimation. We compare
various distractor estimation methods and utilize their result-
ing distractor masks for tracking in WildGS-SLAM. For the
MonST3R mask, we aggregate masks from multiple runs
because MonST3R supports only a limited number of im-
ages per run. The YOLOv8 + SAM mask corresponds to (c)
in Table 5; we include it here for a clearer comparison. As
shown in Table 12, our method consistently outperforms oth-
ers, as other approaches struggle to produce accurate enough
masks, particularly on our Wild-SLAM dataset, which fea-
tures diverse and complex distractors.
Ablation Study on Pretrained Models. We conduct an
ablation study on the pretrained models, namely the depth
estimator and the feature exactor DINOv2 model, as pre-
sented in Table 13. Both novel view synthesis and tracking
evaluations confirm that Metric3D V2 [13], combined with
the finetuned DINOv2 model [57], achieves the best overall
performance, validating our design choices.

Depth Estimator DINOv2 model Wild-SLAM Bonn TUM

PSNR ↑ ATE ↓ ATE ↓ ATE ↓

DPTv2 [56] Original [35] 20.56 0.47 2.36 1.76
DPTv2 [56] Finetuned[57] 20.57 0.47 2.41 1.66
Metric3D V2 [13] Original [35] 20.58 0.52 2.31 1.61
Metric3D V2 [13] Finetuned[57] 20.58 0.46 2.31 1.63

Table 13. Ablation Study on Different Pretrained Models. For
the Wild-SLAM dataset, we report the novel view synthesis results
(PSNR ↑) and the tracking error (ATE RMSE ↓ [cm]). For the
Bonn and TUM datasets, we report the average tracking error (ATE
RMSE ↓ [cm]).
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Figure 12. Failure Cases. In shopping dataset, patterns on the
wall is incorrectly regarded as medium uncertainty because of the
difficulty of reconstructing the complicated textures. In wandering,
humans are not removed due to the lack of observation of the static
scene. Faces are blurred to ensure anonymity.

Failure Cases. In Fig. 12, we present two failure cases
of our method. In the first case, while our method success-
fully removes dynamic objects, it struggles to reconstruct
the complex background, leading to a high SSIM loss in
Eq. (4). Therefore, the high SSIM loss drives the uncertainty
prediction to incorrectly assign higher uncertainty to static
regions.

In the second case, the dynamic objects remain stationary
in some of the frames and, since all frames are captured
from roughly the same camera direction, no earlier frames
are available to observe the static scene without the dynamic
objects. As a result, the system assigns lower uncertainty
to these regions and mistakenly reconstructs the dynamic
objects.
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