
APPENDIX

A. More evaluation metrics
We benchmark models using traditional language metrics,

as done in previous work [8, 15, 18], for quick and auto-
mated evaluations. However, these metrics often fall short
in contextual understanding compared to GPT-4 and human
evaluators, which are better at assessing the quality and rel-
evance of responses in longer sequences, such as planning.
Advised by the reviewers, we supplement our evaluation
with GPT-4 and human assessments. We prompt GPT-4 to
compare model outputs with ground truth answers, provide
a rating with an explanation, and normalize the score to a
percentage, similar to human scoring. We also show the
variance of 5 experiments with different random seeds.

In Tab. 6, both GPT-4 scores (all episodes) and human
evaluations (100 episodes from each dataset) exhibit a no-
table correlation with traditional language metrics, further
validating the effectiveness of our approach and our method
tend to produce consistent responses across multiple tests.

Methods XR-QA XR-EmbodiedPlanning

CIDEr GPT4-score Human-score CIDEr GPT4-score Human-score

Chat-Scene# 114.10± 0.52 39.96± 0.15 39.85 46.18± 0.95 45.88± 0.52 56.48
Leo∗ 112.09± 0.36 40.10± 0.31 36.85 39.45± 0.81 46.11± 0.46 54.76
Ll3da 112.80± 0.73 41.81± 0.24 36.08 35.96± 1.23 43.78± 0.23 60.71
LSceneLLM(Ours) 117.21 ± 0.31 44.79 ± 0.18 42.15 63.08 ± 0.76 53.88 ± 0.24 69.04

Table 6. 3D large scene understanding results.

B. More Details on Generation of XR-Scene

Generation of Cross-Room Scenes HM3D [31] contains
several cross-room, multi-floor 3D scenes. In SceneV-
erse [20], annotations are generated for each room in the
HM3D scenes, including object properties and spatial rela-
tionships with surrounding objects. As shown in Fig. 4(a).
For a given scene, we leverage the ground-true central posi-
tions of each room in HM3D. We randomly sample one room
and calculate the Euclidean distances between other rooms,
the nearest N rooms are selected to form a cross-room scene.

XR-QA Generation For each cross-room scene contain-
ing N rooms, we retrieve object annotations from Scen-
eVerse [20] for these N rooms and filter out objects that
appear exactly once in the scene to ensure uniqueness corre-
sponding to the question. For each annotated object, we use
GPT-4 to generate two types of questions: object properties
and spatial relationships with surrounding objects based on
the annotations.

XR-Planning and XR-EmbodiedPlanning Generation
The embodied planning task requires the model to under-
stand the objects in the scene and their specific locations.
Given a high-level task, the model needs to use the objects

Table 7. Ablation study of XR-Scene dataset on OpenEQA.

Training Data CIDEr GPT-score

Single-Room Scene Data 29.44 35.45
XR-Scene 41.89 40.35

in the scene to generate a series of subtasks. In contrast
to single-room scenes, embodied planning in cross-room
scenes is more complex for the model, as it needs to under-
stand the relationships between objects and the rooms, not
just the relationships between the objects themselves.
The scene captioning task requires the model to provide a
general description of the current scene, including the re-
lationships between objects and their attributes. In larger
scenes, scene captioning demands a stronger spatial under-
standing of the model. The model not only needs to perceive
the positional relationships between objects but also pay at-
tention to the areas to which the objects belong. Our tasks
will include generating captions for the entire large scene
as well as requiring the model to caption only a specific
room. Furthermore, the model needs to infer room attributes
based on the objects present, making scene captioning in
cross-scene Scenes more challenging than in single-room
Scenes.
We generate the top-down view of the cross-room scene
and use bounding boxes to specify that a certain annotation
corresponds to a specific room. Follow Leo [18], We use
prompt engineering to guide GPT-4o in understanding the
scene and generating scene captions and QA pairs for em-
bodied planning. Additionally, we provide the model with
a real RGB-rendered top-down view of the scene to further
reduce model hallucinations, as shown in Fig. 6.

C. Real-world applications and long-term bene-
fits of XR-Scene

Understanding large scenes is a critical ability for many
real-world applications, such as robot navigation and AI
glasses. For example, humans would wear AI glasses and
go across rooms, requiring the AI system to understand
larger scenes to assist. Our proposed XR-Scene, which
covers a large space, helps to develop such an AI ability. To
validate this, we trained two LSceneLLMs, one on single-
room data and the other on XR-Scene data, and evaluated
them using the OpenEQA [27] benchmark for first-person
video understanding, relevant to AI glasses applications. In
Tab. 7, the model trained on XR-Scene effectively handles
human movement in large open spaces, benefiting real-world
VR, AR, and robotics applications.

D. Ablation Study

Selection Threshold of Attention Weight. We also ex-
plored the threshold for the confidence of text tokens to



<top-down-view-image> 
Using the provided scene realistic top-down view and room 

caption per room, design a high-level task that can be performed 
in this 3D scene. Besides, decomposing this high-level task into a 
sequence of action steps that can be performed using the 
instances in this 3D scene.(You need to provide a whole summary 
for the multi-room scene. This summary should contain a rough 
summary of what rooms are in the whole scene......)

Please strictly follow the rules below:<rule>
Room Captions:<caption per room> or <object list>
Example: <example>
You need to generate 5 question-answer pairs follow example 

strictlly in json format and re-thinkng the rules before output. 

In this room, there is a sink, nine cabinets, 
a kitchen counter, an oven, two mugs, three 
books, four hoses, four pictures, eight 
lamps, a TV, eight chairs, five potted plants, 
a refrigerator, a rug, four tables, four 
stools, four vents, and a light switch……

In this room, there are two vents, two 
cabinets, one hose, and two potted plants. 
The room appears to be well-equipped with 
ventilation and storage options. The 
presence of a hose suggests the possibility 
of cleaning or watering tasks……

In this room, there are 4 pillows, 2 lamps, 1 
decoration, 2 cabinets, 1 picture, and 2 storage 
boxes. The pillows are aligned with each other and 
are lower than the lamps. The lamps are higher than 
the cabinets and the pillows. One lamp is below 
another lamp……

In this room, there is a solitary bathtub, 
standing as the sole object of interest. Its 
presence suggests a space dedicated to 
relaxation and cleansing. The room's purpose is 
clear……

The scene features multiple distinct areas. One 
area is a restful bedroom with a bed …… The 
practical and organized area contains pictures, 
boxes for storage …… a minimalistic area 
illuminated by a single lamp exudes calm and 
simplicity, offering a peaceful environment.

Large scene caption

Question: i want to set up a cozy reading corner. 
what should i do?
Answers:  1. go to the room with the single lamp 2. 
place a chair near the lamp 3. add a table next to 
the chair 4. place a few books on the table 5. 
switch on the lamp to create a warm ambiance

Large scene embodied planning

Figure 6. Generation pipeline of XR-SceneCaption and XR-EmbodiedPlanning.

Where is the clutter in relation to the stairs? 
On left side of stairs.

What color is the bed?
White.

What is the shape of the bed?
Rectangular.

What is the color of the toilet paper?
White.

What color is the faucet?
Silver.

What color is the toilet?
White.

What color are the tables?
Brown.

Where is the curtain in relation to the window? 
Left.

Where is the table in relation to the_door? 
To right of door.

Figure 7. More Attention Visualization of LSceneLLM.



Table 8. Ablation studies of selection threshold

Threshold Activate Token Ratio ROUGE METEOR CIDEr

64 40% - 50% 37.68 19.07 114.69
96 10% - 20% 38.18 19.30 117.21

127 3% - 5% 37.89 19.26 115.92

Table 9. Ablation studies of the number of vision tokens

Vision Token Num Scene Magnifier Module ROUGE METEOR CIDEr

512 ✗ 37.27 18.80 112.89
128 ✗ 36.58 18.65 109.92
128 ✓ 38.18 19.30 117.21

Table 10. Ablation studies of dense token

Dense Token Num ROUGE METEOR CIDEr

2 37.91 19.14 115.32
4 38.18 19.30 117.21
6 37.54 19.03 115.14

Table 11. Ablation studies of selection strategies

Select Strategy ROUGE METEOR CIDEr

Attention Map 38.18 19.30 117.21
Random 37.64 19.18 115.66

Table 12. Start layer of scene magnifier module

Start Layer ROUGE METEOR CIDEr

1 18.51 36.51 110.25
4 18.78 37.09 112.82
8 19.30 38.18 117.21

vision tokens in the attention map. We normalized the at-
tention weight of a text token to all vision tokens to a range
of 0-255. The experimental results show that the model
performs best when the chosen threshold is 96, meaning
10%-20% of the vision tokens are selected to interact with
the corresponding fine-grained scene features. If too many
tokens are selected, the model cannot accurately focus on
the local areas, while if too few tokens are selected, the fine-
grained scene information provided is insufficient, offering
limited help in understanding the scene, as shown in Tab. 8.

Numbers of Dense Vision Token Interact With Sparse
Vision Token. This ablation experiment investigates the
optimal number of dense vision tokens with which each
sparse vision token should interact. We sample a certain
number of point cloud features around the center point of the
sparse vision token from the dense point cloud features and
then aggregate them. As shown in Tab. 10, using 4 dense
vision tokens to represent the fine-grained features of a local
region provides the greatest benefit to the model.

The number of Vision Tokens We first explored whether
sampling more visual information from the environment
would improve the model’s performance. As shown in Tab. 9,
although using four times the number of vision tokens does
lead to some performance improvement, the enhancement is
not as significant as the improvement achieved by incorporat-
ing the LSceneLLM module, which validates the efficiency
of our approach.

Dense Vision Token Selection Strategy. We conducted ab-
lation experiments to verify that the attention map in the self-
attention module reflects the visual information the model
focuses on when answering questions. As shown in Tab. 11,
the selection strategy based on attention weight outperforms
the random selection strategy, demonstrating that the infor-
mation about the regions that the model is currently focusing
on aids in understanding the scene, while the random selec-
tion strategy provides little benefit to the model.

Start Layer of Scene Magnifier Module. We conduct an
ablation study for NSA and visualize the attention map of
different layers, as shown in Tab. 12. In Fig. 8, the atten-
tion map in the early layers is dispersed, with similar values
across most regions. Applying a threshold at this stage may
lead to randomly selected focus areas, introducing unpre-
dictability in the self-attention input, thereby reducing the
signal-to-noise ratio and hindering the model’s learning abil-
ity.

Input Layer2 Layer24

What color is the flag?

Where is the table in relation to the door? Where is the table in relation to the door? 

Input Layer2 Layer24

Figure 8. Attention visualization of different layers.

E. More Scene Understanding Results on Scan-
Net

We also test our method on scene caption, embodied plan-
ning, and embodied qa, these datasets are sourced from the
ScanNet part of 3D-LLM [15] and organized by Ll3da [8].
Embodied QA requires the model to answer questions from
the perspective of an agent, considering the agent’s posi-
tion and orientation within the environment. All of these
tasks demand the model to have a holistic understanding
of the entire scene. As shown in Tab. 13, our method out-
performs the current state-of-the-art approaches on most
metrics, demonstrating that the proposed approach not only
captures fine-grained details in the scene but also achieves
an accurate overall understanding of the entire scene.



Table 13. More 3D scene understanding results. ∗ means do not identify the question-related objects for the model.

Method
Scene Caption Embodied Planning Embodied QA

ROUGE CIDEr METEOR ROUGE CIDEr METEOR ROUGE CIDEr METEOR

Leo* [18] 1.80 20.84 13.29 46.40 204.78 19.86 30.89 86.14 18.81
Chat-Scene [16] 3.67 21.05 12.60 40.03 210.86 20.71 34.23 99.01 18.48
Ll3da [8] 1.44 24.62 12.93 45.34 186.13 19.60 33.75 95.53 19.81
LSceneLLM(Ours) 3.07 21.88 14.79 47.05 214.63 21.05 36.00 104.98 21.26

F. More Attention Visualization of LSceneLLM
on XR-QA

We provide more attention map visualization results when
LSceneLLM deals with different instructions on XR-QA.
Experiment results show that our proposed method can accu-
rately locate the task-relevant visual features using adaptive
visual preferences from LLM.

G. Computational Complexity Analysis
In Fig. 9, the performance of our method increases sig-

nificantly with the increase of the flops. Compared with
existing methods, our method achieves better performance
with fewer flops.
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Figure 9. More Attention Visualization of LSceneLLM.


