Hierarchical Features Matter: A Deep Exploration of Progressive
Parameterization Method for Dataset Distillation

Supplementary Material

A. Literature Reviews on Dataset Distillation
A.1. Dataset Distillation in Pixel Space

In this section, we review the methodology of optimizing
synthetic dataset S with the surrogate objective in pixel
space, which provides the basic optimization objective for
all parameterization dataset distillation methods.

A.1.1 DC[22].

Dataset Distillation (DD) [19] aims at optimizing the syn-
thetic dataset S with a bi-level optimization. The main idea
of bi-level optimization is that a network with parameter 6,
which is trained on S, should minimize the risk of the real
dataset 7. However, due to the need to pass through an
unrolled computation graph, DD brings about a significant
amount of time overhead. Based on this, DC introduces a
surrogate objective, which aims at matching the gradients of
a network during the optimization. For a network with pa-
rameters fg trained on the synthetic data for some number
of iterations, the matching loss is

VolS(0) - Vol (0)
VoS (@) Vel (0)]°

Lpc=1- (1)

where ¢7 () represents the loss function (e.g., CE loss)
calculated on real dataset 7, and ¢S (+) is the same loss func-
tion calculated on synthetic dataset 7.

A.1.2 DM 21].

Despite DC significantly reducing time consumption
through surrogate, bi-level optimization still introduces a
substantial amount of time overhead, especially when deal-
ing with high-resolution and large-scale datasets. DM
achieves this by using only the features extracted from net-
works 1 with random initialization as the matching target,
the matching loss is

Lpm = Z‘

where 7, and S, represents the real and synthetic images
from class c respectively.
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A.13 MTT[1].

Distinct from the short-range optimization introduced from
DC, MTT utilizes many expert trajectories {6; }2 which are

obtained by training networks from scratch on the full real
dataset and choose the parameter distance the matching ob-
jective. During the distillation process, a student network is
initialized with parameters 0} by sample expert trajectory at
timestamp ¢ and then trained on the synthetic data for some
number of iterations N, the matching loss is

“ 2
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where 6], ,, represents the expert trajectory at times-
tamp ¢ + M.

3)

Lyt =

A.2. Dataset Distillation in Feature Domain

In this section, we review the methodology of parameter-
ization dataset distillation built upon the aforementioned
dataset distillation methods, achieving better performance
by employing a differentiable operation F (+) to shift the op-
timization space from pixel space to various feature domain,
which can be formulated as

S={F(=)}. €y

where z represents latent code in the feature domain cor-
responding to F(-).

A.2.1 HaBal[13].

HaBa breaks the synthetic dataset into bases and a small
neural network called hallucinator which is utilized to pro-
duce additional synthetic images. By leveraging this tech-
nique, the resulting model could be regarded as a differen-
tiable operation and produce more diverse samples. How-
ever, HaBa simultaneously optimizes the bases and the hal-
lucinator, neglecting the relationship between the two fea-
ture domains. This leads to unstable optimization during
the training process.

A.2.2 IDC[10].

IDC proposes a principle that small-sized synthetic images
often carry more effective information under the same spa-
tial budget and utilize an upsampling module as the differ-
entiable operation. Despite employing a differentiable oper-
ation, the optimization of IDC is still the pixel space, which
resulted in the loss of effective information gain obtained
from other feature domains.



A.2.3 FreD [15].

FreD suggests that optimizing for the main subject in the
synthetic image is more instructive than optimizing for all
the details. Therefore, FreD employs discrete cosine trans-
form (DCT) as the differentiable operation and uses a learn-
able mask matrix to remove high-frequency information,
ensuring that the optimization process only occurs in the
low-frequency domain. This allows the synthetic dataset to
achieve higher performance and generalization. However,
FreD overlooks the effective guiding information within the
high-frequency domain and fails to connect the two feature
domains produced by DCT, leading to potential incomplete
optimization.

A.2.4 GLaD [2].

Different from existing methods [3, 7, 17, 24] utilizing dif-
fusion models [25, 26], GLaD employs a pre-trained gen-
erative model (i.e., GAN) and distills the synthetic dataset
in the corresponding latent space. By leveraging the capa-
bility of a generative model to map latent noise to image
patterns, GLaD achieves better generalization to unseen ar-
chitecture and scale to high-dimensional datasets. However,
for StyleGAN, the earlier layers tend to provide the infor-
mation about the main subject in an image while the later
layers often contribute to the details. However, GLaD at-
tempts to balance the low-frequency information with the
high-frequency information by selecting an intermediate
layer as a fixed optimization space, discarding the guiding
information from the earlier layers can lead to incomplete
optimization. Another limitation of GLaD is the need for a
large number of preliminary experiments. GLaD selects a
specific intermediate layer suitable for all datasets for dif-
ferent distillation methods, However, under the same distil-
lation method, the optimal intermediate layer correspond-
ing to different datasets is not the same, especially when
the manifold of the datasets varies greatly, which suggests
that GLaD cannot spontaneously adapt to different datasets,
distillation methods, and GANSs.

B. Additional Experimental Results
B.1. More Comparisons with GLaD

To expand the optimization space, the method we proposed
utilizes hierarchical feature domains composed of interme-
diate layers from GAN. To investigate whether optimization
across multiple feature domains is superior to optimization
within a single fixed feature domain, we evaluate the perfor-
mance by simply expanding the optimization space based
on the baseline. As shown in Table 1, compared to GLaD,
which only selects a single yet optimal intermediate layer of
the GAN as the optimization space, H-PD has successfully

achieved considerable improvement, validating our view-
point that the optimization result from the previous feature
domain can serve as better starting point for subsequent fea-
ture domain. Please note the result is obtained by not select-
ing S*.

Figure 1. The comparison of visualization.

To present a more comprehensive comparison, we evalu-
ate the cross-architecture performance of a high-resolution
synthetic dataset under the same setting (i.e., DSA on
ImageNet-[A, B, C, D, E] under IPC=1). As shown in Table
2, our proposed H-PD still achieves considerable improve-
ments, demonstrating the stability of our proposed method.
Figure | illustrates the comparison of synthetic dataset visu-
alization generated by H-PD and GLaD using the same ini-
tial image. The images produced by H-PD achieve a good
balance between content and style. On one hand, H-PD
tends to preserve more main subject information by opti-
mizing in the earlier layers of the GAN. On the other hand,
since H-PD also undergoes optimization in the later layers,
the synthetic images tend to be sharper and rarely produce
the kaleidoscope-like patterns that are common in the GLaD
method.

B.2. Visualizing Morphological Transition of Syn-
thetic Images

As shown in Figure 2a, we demonstrate the visualization
changes of the synthetic image throughout the optimiza-
tion process. Layer O represents the initial image produced
by StyleGAN-XL using averaged noise, and Layer 7 indi-
cates the image when the optimization space reaches layer
1. In the early stage of optimization, since the optimization
space is located in the earlier layer of the GAN, the opti-
mization object primarily focus on the main subject of the
synthetic image. Meanwhile, GAN still maintains a high
degree of integrity which leads to a strong constraint on the
slight changes in the latent produced during the optimiza-
tion process, which can be transformed into patterns resem-
bling real images instead of noises. Thus the tendency in
the early stage of optimization is to generate images that
better conform to the constraint of distillation loss yet ap-
pear more realistic, leading to produce synthetic images that
can be regarded as a better starting point for the subsequent



Alg. Opimization Space ImNet-A  ImNet-B  ImNet-C ImNet-D ImNet-E ImNette ImWoof ImNet-Birds ImNet-Fruits ImNet-Cats
Fixed (Pixel) 51.74£0.2 53.3+1.0 48.0+0.7 43.0£0.6 39.5+0.9 41.8+0.6 22.6+0.6 37.3+0.8 22.4+1.1 22.6+£0.4
TESLA Fixed (GAN) 50.7£0.4 51.9+1.3 449404 399+1.7 37.6+£0.7 38.7+1.6 23.4+1.1 35.8+1.4 23.1+0.4 26.0+£1.1
Unfixed 53.1+0.8 55.4+0.7 47.5+09 44.1+06 40.8+0.7 42.8+1.0 27.0+£0.6  37.6+0.9 24.7+0.7 28.3+0.8
Fixed (Pixel) 43.240.6 47.240.7 41.3+0.7 34.3+1.5 34.9+15 342+1.7 22.5+1.0 32.0+1.5 21.0+0.9 22.0+0.6
DSA Fixed (GAN) 44.1+24 492411 42.0+0.6 356409 35.8+0.9 354+12 223+1.1 33.8+0.9 20.7+1.1 22.6+0.8
Unfixed 46.1+0.7 50.0+0.9 43.8+1.4 37.1+0.9 36.6+£0.6 36.2+0.5 22.7+0.3  34.9+15 21.2+0.8 23.1+0.3
Fixed (Pixel) 39.4+18 40.9+1.7 39.0+1.3 30.8+£0.9 27.0+0.8 30.4+2.7 20.7+1.0 26.6+2.6 20.4+1.9 20.1£1.2
DM Fixed (GAN) 41.0£1.5 429419 394+1.7 332414 303+1.3 322+1.7 212415 27.6+1.9 21.8+1.8 22.3+1.6
Unfixed 42.3+15 44.1+15 41.3+1.7 33.7+1.1 31.5+1.1 34.0+1.2 23.1+1.3  28.9+1.4 24.3+1.3 22.8+0.8

Table 1. Abltion study on optimization space comparison. “Fixed (Pixel)” refers to optimize in pixel space and “Fixed (GAN)” refers to

GLaD, while Unfixed refers to optimize in multiple feature domains.
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(b) Visualization of corresponding CAM.

Figure 2. The visualization change of synthetic images and corresponding CAM during the optimization process using different distillation
methods. “Layer” refers to the index of intermediate layers provided by StyleGAN-XL.

Method ImNet-A ImNet-B  ImNet-C  ImNet-D  ImNet-D
Pixel 38.3+4.7 32.844.1 27.6+3.3 25.5+1.2 23.5+24
GLaD 374455 41.5+1.2 3574+4.0 27.9+1.0 29.3+1.2
H-PD  40.7+2.1 42.9+1.8 37.2+22 30.1+1.7 29.7+1.8

Table 2. Higher-resolution (256x256) synthetic dataset (using

DSA) cross-architecture performance (%).

optimization process.

In the later stage of optimization, the main subject of the
synthetic image no longer undergoes significant changes,
and the optimization objective shifts along with the move-
ment of the optimization space, focusing more on the de-
tails of the synthetic images. As shown in Figure 2a, due

to the weakened generative constraint of the incomplete
GAN, the final synthetic image becomes similar to the in-
distinguishable and distorted image produced by existing
distillation methods. Building upon the better synthetic im-
age obtained through the optimization process in the earlier
layers, different distillation methods gradually incorporate
more guidance-oriented customized patterns into the syn-
thetic image, achieving further performance improvement,
which has also been proved by recent work [23].

B.3. Qualitative Interpretation using CAM

We additionally introduce CAM [14] to visualize the
heatmap of class-relevant information in the synthetic im-
ages as shown in Figure 2b, which also demonstrates our
perspective from another aspect. The blue areas represent



Layers Optimization ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E  ImNette ImWoof ImNet-Birds ImNet-Fruits ImNet-Cats
50 53.6+0.2 552415 47.3+0.5 44.1+£0.7 40.5+1.1 43.8+£04 26.6+0.7 37.1+0.6 22.9+0.5 27.8+1.0
1 100 55.3+0.8 57.1+0.7 49.1+0.9 46.6+£0.4 422+1.5 44.9+12 28.6+0.6 39.44+0.8 25.9+0.7 30.1+1.2
200 55.440.7 57.5+1.1 48.6+0.8 46.2+0.9 43.6+0.6 45.7+0.5 28.7+0.4 39.4+0.6 25.540.5 29.840.2
50 51.3+£0.9 54.2+1.1 46.3+0.8 44.1+1.2 40.3+1.2 41.8+1.4 27.1+0.6 36.5+1.1 23.0+1.2 28.1+1.3
2 100 55.1+£0.6  57.44+0.3 49.5+0.6 46.3+0.9 43.0+0.6 45.4+1.1 28.3+0.2 39.7+0.8 25.6+0.7 29.6+1.0
200 55.6+0.9 57.94+0.5 49.44+0.3 46.0+£0.1 43.5+0.4 45.1+0.7 28.6+0.2 39.3+£0.8 25.9+1.1 29.9+0.6
50 51.8+£0.7 529412 46.1+1.5 42.3+0.5 39.8+0.5 409+1.3 24.7+1.1 35.94+0.5 21.2+1.7 25.3+1.1
4 100 53.3+0.8 542411 473412 41.8+£1.7 42.7+0.6 27.7+05 27.1+1.0 27.0+0.9 22.5+1.4 26.4+1.2
200 55.0+£1.0 57.0+£1.3 48.1+1.6 452+0.5 42.1+1.4 45.0+05 27.24+0.9 38.8+1.1 24.6+0.5 28.4+0.8

Table 3. Abltion study on layers combination and optimization allocation using TESLA. "Layers” refers to the number of layers per
optimization space, ”Optimization” refers to the number of SGD steps allocated in each optimization space.

Layers Optimization ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E  ImNette ImWoof ImNet-Birds ImNet-Fruits ImNet-Cats
50 452+41.2 483+1.3 42.0+04 36.2+0.7 35.0+0.8 35.8+1.1 22.7£1.0 33.5+£0.5 21.1£1.5 22.7+0.8
1 100 46.2+0.7 51.1+0.4 43.3+1,1 37.240.5 36.6+£0.9 36.7+1.3 22.94+0.8 35.6+1.1 22.1+1.5 23.8+0.7
200 46.5+0.9 50.7+1.1 43.8+0.2 37.3+0.7 37.6+0.7 36.9+1.3 24.3+0.5 34.9+0.3 22.6+1.3 23.6+0.7
50 44.8+0.4 489+0.9 42.1+1.1 35.6+1.0 36.6+0.6 34.2+1.1 22.1+0.6 33.3+1.6 20.0+1.3 22.7+0.8
2 100 46.9+0.8 50.7+0.9 43.9+0.7 37.4+0.4 37.2+0.3 36.9+0.8 24.0+0.8 35.3+1.0 22.4+1.1 24.14+0.9
200 46.8+0.5 50.84+0.3 43.44+0.6 37.0+1.3 37.3£0.5 37.1+0.7 23.8+1.3  35.6%1.1 22.14+1.2 24.6+1.3
50 43.6+£0.7 47.840.7 40.4+0.6 34.6+£0.5 34.24+0.8 334412 21.3+0.9 32.7+1.4 19.940.5 21.64+0.6
4 100 45.7+£0.7 494409 43.1+11 36.1+1.3 36.4+0.8 3524+0.6 23.4+1.1 34.7+0.5 21.3+1.1 23.5+1.3
200 46.3+0.8 50.1+0.9 43.2+0.7 37.0+£0.4 36.8+£1,6 36.2+1.0 23.3%1.3 344+1.4 21.6+0.8 23.7+£0.5

Table 4. Abltion study on layers combination and optimization allocation using DSA.

regions of class-relevant information, which can produce
the largest gradient during the training process. Conversely,
the red areas indicate regions of class-irrelevant informa-
tion, with deeper colors signifying higher degrees of corre-
sponding information. In the early stage of optimization,
the class-relevant information of the main subject in the
synthetic image produced by various distillation methods
is compressed.

Interestingly, for the gradient matching methods TESLA
and DSA, which rely on long-range and short-range gra-
dient matching respectively, the class-relevant information
of the main subject remains unchanged when optimization
space changes to later layers, while the gradient that can
be produced by the image background (e.g., corners) are
further decreased, as indicated by the deeper red color, even
though the changes in the background are hardly observable
by the naked eye during the optimization process. However,
for the feature matching method DM, compared to the vi-
sualized kaleidoscope-like pattern, the visualization of cor-
responding CAM shows an unbalanced distribution and fo-
cuses on areas not typically observed by humans. We be-
lieve this phenomenon also explains the poorer performance
of DM compared with gradient matching methods. Com-
pared to the synthetic images with a centralized concen-

tration of class-relevant information produced by TESLA
and DSA, the images generated by DM are too diverse due
to fitting all the features of the entire dataset including the
class-irrelevant features, which is disadvantageous for train-
ing neural networks on tiny distilled datasets.

B.4. Layers Combination and Optimization Alloca-
tion

As discussed, we adopt a uniform sampling method that
evaluates the synthetic dataset per 100 optimization epochs
(even less when using DM) to align with the evaluation
method of the baseline (i.e., GLaD). Additionally, we de-
compose StylGAN-XL into G110+ -0 Gy 0 Gy( - ) to align
with the time complexity of the baseline. We present an
ablation study on the allocation of optimization epochs per
optimization space. Building on this, we further explore
the impact of combining different numbers of intermediate
layers into a single optimization space and allocating dif-
ferent numbers of optimization epochs to each optimization
space on the performance of the synthetic dataset. For all
distillation methods, we explore the impact of varying opti-
mization spaces by using combinations of 1, 2, and 4 inter-
mediate layers within each optimization space. Under the
same optimization space setting, for TESLA and DSA, we



investigated the effects of different numbers of optimization
epochs allocated to each optimization space by using 50,
100, and 200. For DM, due to the overfitting issue caused
by feature matching, we used 10, 20, and 50 as the number
of optimization epochs per optimization space.

The results for TESLA and DSA are shown in Table 3
and Table 4. Combining 1 or 2 intermediate layers as a sin-
gle optimization space does not produce a significant im-
pact on the performance, indicating that existing redundant
feature spaces provided by GAN contribute little to the dis-
tillation tasks and may even lead to a negative effect. Under
this setting, allocating 50 optimization epochs per optimiza-
tion space produces a clear phenomenon of optimization not
converging. However, when the number of optimization
epochs comes to 100 or 200, the optimization converges
without significant performance differences. Achieved by
implicitly selecting the optimal synthetic dataset through
the proposed class-relevant feature distance metric, allow-
ing us to avoid overfitting issues to some extent through a
certain level of optimization path withdrawal. Therefore,
we choose 100 epochs as the basic setting to reduce time
complexity in the actual training process. When using 4 in-
termediate layers as an optimization space, the performance
is decreased even when setting optimization epochs to 200,
indicating that too few feature domains could not provide
sufficiently rich guiding information, forcing the optimiza-
tion process to require more epochs to converge, demon-
strating the superiority of our proposed H-PD in utilizing
multiple feature domains.

The results for DM are shown in Table 5. Similar to
TESLA and DSA, Combining 1 or 2 intermediate layers
as a single optimization space results in similar perfor-
mance, while combining 4 intermediate layers as optimiza-
tion space leads to a significant performance drop. How-
ever, under the same optimization space settings, an ex-
cessive number of optimization epochs often leads to a se-
vere decline in performance when using DM as the distil-
lation method. As aforementioned, DM is unable to focus
on class-relevant information, which causes an irreversible
loss of the main subject information in the synthetic im-
age after deploying a large number of optimization epochs
in a specific feature domain, which in turn leads to a sit-
uation where the informative guidance provided by subse-
quent feature domains could not be effectively incorporated
into the synthetic image, resulting in performance degra-
dation. In this case, even the proposed class-relevant fea-
ture distance could not effectively select a superior synthetic
dataset. To align with the approach of decomposing GAN
used in TESLA and DSA, we ultimately combine 2 inter-
mediate layers as an optimization space and deploy 20 op-
timization epochs as the experimental setting for DM.

—e— MTT norm

0.48 1 DC_norm

—s— DM_norm

2 4 6 8 10

Figure 3. Quantitative results of loss function value using different
distillation methods. Note that we normalize all the values for
clear comparison.

B.5. Ablation Study on Searching Strategy

To better utilize the informative guidance provided by mul-
tiple feature domains, we propose class-relevant feature dis-
tance as an evaluation metric for implicitly selecting the op-
timal synthetic dataset. We demonstrate the ablation study
using different implicit evaluation metrics, as shown in Ta-
ble 6, the metric we proposed outperforms the use of loss
function value corresponding to the distillation methods as
the metric under all settings. It is worth noting that, al-
though the accuracy of the model trained on the synthetic
dataset can be used as an explicit evaluation metric for the
data distillation task, the evaluation process incurred much
greater time overhead than the distillation task itself, ren-
dering it impractical for actual training processes.

To explore the principle of the superiority of class-
relevant feature distance, we first discussed the respective
limitations of directly using existing distillation loss func-
tion value as the evaluation metric. The tendency of dif-
ferent distillation loss functions is shown in Figure 3. For
TESLA, the loss function is obtained by calculating the
distance between the student network parameters and the
teacher network parameters. However, in order to consider
diversity, TESLA selects a random initialization method
when initializing the student network parameters, and the
expert trajectory also comes from the training process of
models with different initialization, leading to a significant
fluctuation caused by utilizing different initialization pa-
rameters. For DSA, the loss function utilizes neural net-
work gradients as guidance. However, when IPC=1, the
proxy neural network used in each optimization process is
randomly initialized, causing DSA to face the same issue
as TESLA, where the loss function is affected by network
parameter initialization. As for DM, the loss function is
obtained from the feature distance between the dataset fea-
tures extracted by randomly initialized networks, resulting
in the same impact of network initialization parameters on
this loss function. Additionally, DM suffers from severe
overfitting in the later stages of optimization due to fitting



Layers Optimization ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E  ImNette ImWoof ImNet-Birds ImNet-Fruits ImNet-Cats
10 421422 44.1+£1.6 41.7+1.7 33.9+1.2 313+19 342421 24.1+14  29.7+0.7 24.1+1.6 22.6+1.3
1 20 41.6+1.6 44.8+£1.8 413+1.4 34.1+21 312405 33.7£0.6 24.0+1.3  29.6£1.7 23.440.8 23.7£1.9
50 40.2+1.6 43.4+1.7 402420 33.1£1.3 29.7+1.8 32.6£1.9 23.1+2.1 28.24+1.6 22.14+0.8 21.0+0.5
10 41.4+1.7 43.5+1.3 404+09 34.1+1.3 31.3+1.8 33.6+£1.7 22.4+1.6 28.3+2.1 23.1+1.7 22.9+1.5
2 20 42.8+1.2 44.7+1.3 41.1+1.3 34.8+1.5 31.9+0.9 34.8+1.0 23.9+1.9 29.5+1.5 24.4+2.1 24.2+1.1
50 40.1+1.8 42.6+2.0 40.2+1.6 32.6+1.7 29.7+1.3 33.1+£0.6 21.6+0.7 27.7£1.6 22.2+1.3 22.4+1.9
10 39.9+14 425+1.0 404+1.8 324416 30.1+24 327423 209+1.6  27.54+2.2 22.5+1.7 21.8+1.2
4 20 40.6+1.3 42.5+1.6 39.6+2.1 32.2+1.5 30.1+1.3 329+1.8 21.6+15  27.3+1.2 21.7+2.3 22.3+1.6
50 40.4+1.7 427413 39.9+1.2 32.0+£14 30.3+1.9 32.6+£1.6 22.0+1.1 27.840.9 21.1£1.7 22.6+1.4

Table 5. Abltion study on layers combination and optimization allocation using DM.

Alg. Searching Basis  ImNet-A ImNet-B  ImNet-C  ImNet-D ImNet-E ImNette ImWoof ImNet-Birds ImNet-Fruits ImNet-Cats
- 54.74£0.8 56.2+0.7 48.1+0.9 454+0.9 41.8+0.6 43.840.8 28.1+1.0  38.5+1.2 24.14+0.5 28.7+0.9
TESLA Loss Value 53.6+£0.9 56.9+0.7 483+0.8 45.0+0.6 41.0+1.2 445+0.8 27.5+1.4  37.840.7 25.1+0.9 27.6+1.0
Feature Distance  55.1+0.6 57.4+0.3 49.5+0.6 46.3+£0.9 43.0+0.6 45.4+1.1 28.3+0.2  39.74+0.8 25.6+0.7 29.6+1.0
- 459+0.7 50.1+1.1 43.1+£14 36.94+0.8 36.8+0.6 36.0+0.9 23.6+0.8  34.5+0.4 21.9+0.8 23.2+0.9
DSA Loss Value 46.6+1.3 48.9+1.7 43.6+1.1 36.1+1.2 36.6+0.5 36.2+0.9 23.1+0.6 33.6+0.7 21.3+1.1 22.8£1.0
Feature Distance  46.9+0.8 50.7+0.9 43.9+0.7 37.4+£04 37.2+0.3 36.9+0.8 24.0+0.8  35.3%1.0 22.4+1.1 24.1+0.9
- 424416 442421 41.0+£1.2 34.0+1.2 31.1+1.0 34.5+21 23.1+09  29.0+1.5 241414 22.6+1.5
DM Loss Value 41.6+1.8 444414 40.7£2.1 34.6+1.7 30.1+1.3 34.5+1.3 23.6+1.2 28.7+1.3 24.4+1.3 21.2+1.2
Feature Distance  42.8+1.2 44.7+1.3 41.1+1.3 34.8+15 31.9+0.9 34.8+1.0 23.9+1.9  29.5+15 24.4+2.1 24.2+1.1

Table 6. Quantitative results on searching basis.
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refers to not employing a searching strategy, "Loss Value” refers to directly using

corresponding loss function value as the searching basis, “Feature Distance” refers to the use of proposed class-relevant distance as a

searching basis

to the useless features. In summary, the loss functions cor-
responding to the three distillation methods could not serve
as effective evaluation metrics due to the excessive diver-
sity.

ol

Figure 4. The visualization comparison of CAM between pre-
trained model and random model using DM.

Distinguished from existing distillation methods, where
the loss function is influenced by the need to fit diversity,
our proposed class-relevant feature distance effectively ad-
dresses this issue by using CAM, which is calculated by uti-
lizing a pre-trained neural network, and we utilize a ResNet-
18 trained on ImageNet-1k as a proxy model for comput-
ing CAM. As shown in Figure 4, we demonstrate the dif-
ference between the visualization obtained using the pre-
trained model and those obtained using a randomly initial-

ized model. The observation indicates that there is a sig-
nificant difference in the regions of interest for the two,
by utilizing a pre-trained model with fixed parameters, we
can better identify the feature regions that are beneficial for
the classification task (i.e., larger gradients). Therefore, our
proposed metric successfully leverages this strong supervi-
sory signal to achieve data selection while eliminating the
strong correlation between the loss function and the proxy
model parameters.

Method ImNet-A  ImNet-B  ImNet-C  ImNet-D  ImNet-E
GLaD-TESLA 50.7+0.4 51.9+1.3 449+04 399+1.7 37.6+0.7
+ Average Initialization ~51.9+1.0 53.5+£0.7 46.1+0.9 41.0+0.7 39.1+1.0
GLaD-DSA 44.1+2.4 49.2+1.1 42.0+£0.6 35.6+0.9 35.840.9
+ Average Initialization = 45.4:+0.6 48.9+0.8 40.6+0.7 36.4+0.5 34.8+0.3
GLaD-DM 41.0+1.5 429+1.9 39.4+1.7 33.2+14 30.3+1.3
+ Average Initialization =~ 41.5+1.2 43.2+1.6 39.9+1.7 32.2+0.9 30.8+1.3

Table 7. Ablation study of average noise initialization on GLaD.

B.6. Ablation Study on Average Noise Initialization

To investigate the effect of using averaged noise as initial-
ization, we conduct ablation experiments on both GLaD and
H-PD respectively. As shown in Table 7, averaged noise
often provides a significant gain for GLaD. Indicating that



using averaged noise as input tends to produce images with
reduced bias that conform to the statistical characteristics of
the real dataset, implying that images generated from aver-
aged noise are usually centered within the real dataset. As
aforementioned, since GLaD neglects the informative guid-
ance from the earlier layers, leading to a lack of optimiza-
tion for the main subject of the synthetic image, averaged
noise can to some extent replace this operation.

Method ImNet-A ImNet-B  ImNet-C  ImNet-D ImNet-E

H-PD-TESLA 54.1£0.5 56.8+£0.4 489+1.3 45.0+0.7 42.1+0.6
+ Average Initialization = 55.1+0.6 57.4+0.3 49.5+0.6 46.3+0.9 43.0+0.6

H-PD-DSA 46.5+£1.0 504404 44.5+£0.6 37.7£1.1 36.9+0.7
+ Average Initialization = 46.9+0.8 50.7+0.9 43.9+0.7 37.4+04 37.2+0.3

H-PD-DM 42.6+1.6 44.5+0.9 423+14 345+1.1 32.3+1.3
+ Average Initialization =~ 42.8+1.2 44.7+1.3 41.1+1.3 34.8+15 31.9+0.9

Table 8. Ablation study of average noise initialization on H-PD.

As shown in Table 8, average noise initialization pro-
vides only a limited improvement for H-PD on TESLA,
while using DSA and DM, averaged noise is closer to ran-
dom initialization. The observation aligns with our perspec-
tive that H-PD requires optimization through all layers of
the GAN, which has already led to optimization for the main
subject information that conforms to the constraints of the
loss function during the early stages of training. The role
of averaged noise is then reduced to merely providing sam-
ples that better conform to statistical characteristics, which
is also why we still employ averaged noise for H-PD to ob-
tain a training-free optimization starting point.

Additionally, since DSA tends to optimize towards clas-
sification boundary samples or noisy samples, and DM
tends to substantially modify synthetic datasets to achieve
feature maximum mean discrepancy optimization, neither
GLaD nor H-PD with average noise initialization can effec-
tively improve the performance on DSA and DM. Never-
theless, TESLA is most effective in preserving the primary
subject information in the synthetic images, which allows
for the averaging of noise and the achievement of a rela-
tively stable improvement.

C. Experimental Details
C.1. Dataset

We evaluate H-PD on various datasets, including a low-
resolution dataset CIFAR10[11] and a large number of high-
resolution datasets ImageNet-Subset.

* CIFAR-10 consists of 32 x 32 RGB images with 50,000
images for training and 10,000 images for testing. It has
10 classes in total and each class contains 5,000 images
for training and 1,000 images for testing.

* ImageNet-Subset is a small dataset that is divided out
from the ImageNet[5] based on certain characteristics. By
aligning with the previous work, we use the same types

of subsets: ImageNette (various objects)[9], ImageWoof
(dogs)[9], ImageFruit (fruits) [1], ImageMeow (cats) [1],
ImageSquawk (birds) [1], and ImageNet-[A, B, C, D, E]
(based on ResNet50 performance) [2]. Each subset has 10
classes. The specific class name in each Imagenet-Subset
is shown in Table 9.

C.2. Network Architecture

For the comparison of same-architecture performance, we
employ a convolutional neural network ConvNet-3 as the
backbone network as well as the test network. For low-
resolution datasets, we employ a 3-depth convolutional neu-
ral network ConvNet-3 as the backbone network, consisting
of three basic blocks and one fully connected layer. Each
block includes a 3 x 3 convolutional layer, instance nor-
malization [18], ReLU non-linear activation, and a 2 X 2
average pooling layer with a stride of 2. After the con-
volution blocks, a linear classifier outputs the logits. For
high-resolution datasets, we employ a 5-depth convolu-
tional neural network ConvNet-5 as the backbone network
for 128 x 128 resolution, ConvNet-5 has five duplicate
blocks, which is as the same as that in ConvNet-3. For
256 x 256 resolution, we employ ConvNet-6 as the back-
bone network.

For the comparison of cross-architecture performance,
we also follow the previous work: ResNet-18 [8], VGG-11
[16], AlexNet [12], and ViT [6] from the DC-BENCH [4]
resource.

C.3. Implementation details

The implementation of our proposed H-PD is based on the
open-source code for GLaD [2], which is conducted on
NVIDIA GeForce RTX 3090.

To ensure fairness, we utilize identical hyperparameters
and optimization settings as GLaD. In our experiments, we
also adopt the same suite of differentiable augmentations
(originally from the DSA codebase [20]), including color,
crop, cutout, flip, scale, and rotate. We use an SGD op-
timizer with momentum, /5 decay. The entire distillation
process continues for 1200 epochs. We evaluate the per-
formance of the synthetic dataset by training 5 randomly
initialized networks on it.

To obtain the expert trajectories used in MTT, we train
a backbone model from scratch on the real dataset for 15
epochs of SGD with a learning rate of 1072, a batch size
of 256, and no momentum or regularization. To main-
tain the integration of different distillation methods, we
do not use the ZCA whitening on both high-resolution
datasets and low-resolution datasets different from previ-
ous work[1], which leads to a same-architecture perfor-
mance drop, please note that our proposed H-PD still out-
performs under the same setting. Different from GLaD
which records 1000 expert trajectories for the MTT method,



Dataset

0 1

2 3 4 5 6 7 8 9
Probiscis Three-Toed Cliff Yellow . .
ImNet-A Leonberg Monkey Rapeseed Sloth Dwelling  Lady’s Slipper Hamster Gondola Orca Limpkin
ImNet-B Spoonbill Website Lorikeet Hyena Earthstar Trollybus Echidna  Pomeranian Odometer Ruddy
Turnstone
Freight N . Disk Bee Rock . European Cabbage
ImNet-C Car Hummingbird Fireboat Brak Eater Beauty Lion Gallinule Butterfly Goldfinch
ImNet-D Ostrich Samoyed  Snowbird  DrAPAICON - piikadee Sorrel Admiral Great Hornbill Ringlet
Griffon Gray Owl
. Black King Potter’s . . .
ImNet-E Spindle Toucan Swan Penguin Wheel Photocopier Screw Tarantula  Oscilloscope Lycaenid
ImNette Tench Enghsh Cassette Chainsaw Church French Horn Garbage Gas Golf Parachute
Springer Player Truck Pump Ball
Australian Border . English Rhodesian . Golden English
ImWoof Terrier Terrier Samoyed Beagle Shih-Tzu Foxhound Ridgeback Dingo Retriever Sheepdog
ImNet-Birds ~ Peacock Flamingo Macaw Pelican ng. Bald Toucan Ostrich Black Cockatoo
Penguin Eagle Swan
ImNet-Fruits ~ Pineappl Banan: Strawb Or: L Pomegranat Fi Bell P Cucumby Granny
miNet-Fruits meapple anana rawbperry range emon omegranate 18 € epper ucumber Smith Apple
Tabby Bengal Persian Siamese Egyptian . . Snow
ImNet-Cats Cat Cat Cat Cat Cat Lion Tiger Jaguar Leopard Lynx
Table 9. Corresponding class names in each ImageNet-Subsets. The visualizations follow the same order.
Synthetic ~ Expert Max expert Trajectory Learningrate Learning rate Learning rate Learning rate Steps
Dataset IPC .
steps epochs epoch number (Learning rate) (Teacher) (Latent w) (Latent f) per space
—6 -2 1 4
CIFAR-10 1 20 3 50 100 10 10 10 10 100
10 20 3 50 100 1076 1072 10" 10 100
ImageNet-Subset 1 20 3 15 200 1076 1072 10 10 100
Table 10. TESLA hyper-parameters
Dataset pc Leamingrate Learningrate  Steps optimization epochs and achieve better performance both
(Latent w) (Latent f) per space on same-architecture and cross-architecture settings, further
1 1072 10* 20 proving the superiority of our H-PD. The detailed hyperpa-
CIFAR-10 .
10 10-2 10! 20 rameters are shown in Table 11, Table 12 and Table 10.
1072 10t 20 . o
ImageNet-Subset D. More Visualizations
10 1072 10* 20
We provide additional visualizations of synthetic datasets
Table 11. DM hyper-parameters generated by H-PD using diverse distillation methods, as
- - - shown in Figure 5, Figure 6, and Figure 7.
inner outer Learningrate Learning rate Steps
Dataset IPC
loop  loop (Latent w) (Latent f) per space
-3 0
CIFAR-10 1 1 1 10 10 100
10 50 10 1073 10° 100
-3 0
ImageNet-Subset 1 1 1 10 10 100
10 50 10 1073 10° 100

Table 12. DSA hyper-parameters

we only record 200 expert trajectories and thus largely re-
duce the computational costs. Additionally, while GLaD
performs 5k optimization epochs on the synthetic dataset
using MTT as the distillation method, we only perform 1k



Figure 5. More visualization of the synthetic datasets using TESLA.



Figure 6. More visualization of the synthetic datasets using DSA.
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Figure 7. More visualization of the synthetic datasets using DM.
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