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Supplementary Material

The project page is available at HERE, which contains
demo videos for better visualization.

A. Implementation Details
During the denoising sampling process, we employ the
DDIM sampler [10] combined with our proposed guidance,
setting the number of sampling steps to 50. Regarding
the trajectory initialization strategy, for each input view in
its camera space, we sample views by changing the po-
lar/azimuth angle to [�30�,�15�, 0�, 15�, 30�], and set-
ting the radial distance to [1, 1

3 ,
1
10 ] of the depth of the cen-

ter pixel (from the prediction of ViewCrafter [17]). Out of
75 sampled views, we discard those whose renderings ex-
hibit holes larger than 10% of the image size (to filter out
uncommon viewpoints), then select the top 6 views with
the largest holes from the remaining. To obtain the point
cloud used for initialization, we follow the standard pipeline
provided on the DUSt3R [13] webpage. Since our focus is
sparse-input radiance fields reconstruction, the groundtruth
camera poses and intrinsics are provided. During DUSt3R
optimization, we fix both the poses and intrinsics to their
groundtruth values. In the main paper, we conduct experi-
ments on a new benchmark that is created from two indoor
datasets, the synthetic Replica [11] and the realistic Scan-
Net++ [16] datasets. Please refer to [18] for more details
about the benchmark.

B. More Results
Our method focuses on holistic modeling of an indoor scene
of a moderate size, and we conduct the experiments in the
main paper with 6 input views, since 6 input views are ba-
sically sufficient to cover the entire room. To validate the
effectiveness of our method, we also test our method with
different number of views following the common 3/6/9-
view settings of sparse-input modeling. Tab. A1 validates
that, our method is effective given different number of input
views, with consistent improvements over our baseline. In-
stantSplat [2] is a strong baseline of sparse-input pose-free
modeling, leveraging DUSt3R [13] point cloud for 3DGS
initialization. Our method also consistently outperforms In-
stantSplat as shown in Tab. A1.

To obtain a thorough understanding of the source of the
performance improvement, we show some quantitative re-
sults regarding performances of observable and the unob-
servable regions respectively in Tab. A2. The results show
that our method brings improvement in both observable and
unobservable regions.

We further compare our method with two representa-
tive methods that leverage diffusion models for sparse-input
modeling, ReconFusion [14] and CAT3D [3] on the datasets
of RealEstate10K and LLFF. We adhere to their settings for
fair comparisons and the results are shown in Tab. A3. On
the LLFF dataset, our method is based on the strong base-
line of binocular-guided 3DGS [4]. The results show that
our method achieves comparable performance with both
ReconFusion and CAT3D.

We provide per-scene comparisons in Table A4, demon-
strating that our method consistently achieves superior per-
formance across all scenes. Additional qualitative results
are shown in Fig. A3. These results highlight the effective-
ness of our approach in addressing issues such as extrapola-
tion and occlusion, as seen in examples like the wall behind
the chair (second row) and the ceiling (third row). Further-
more, our method preserves more intact structures with finer
details, such as the edges in the fifth and sixth rows.

We present a comparison of the generated sequences
from the video diffusion model with and without the pro-
posed guidance in Fig. A2. The results clearly show that our
proposed guidance enhances the plausibility of the gener-
ated sequences by maintaining consistent appearances and
ensuring that only elements present in the scene are gen-
erated. Consistency in the generated video is crucial for
effective 3DGS optimization. Using inconsistent sequences
for 3DGS optimization often leads to artifacts, such as black
shadows in the renderings, which significantly degrade vi-
sual quality, as demonstrated on the demo page.

C. Discussion
While our approach significantly improves overall quality
by addressing extrapolation and occlusion challenges, we
observe that it occasionally produces over-smoothed results.
We hypothesize that this is due to the limited resolution sup-
ported by the video diffusion model during generation. On
a 32GB V100 GPU, we are constrained to generating se-
quences at resolutions of 320×448 for the Replica dataset
and 320×512 for the ScanNet++ dataset, which are sub-
sequently upsampled to rendering resolutions of 480×640
and 480×720, respectively, for supervision during 3DGS
optimization. This upsampling process introduces under-
sampling, which can smooth out certain regions and re-
sult in over-smoothed effects. Addressing the challenge of
preserving high-frequency details during 3DGS optimiza-
tion under resource-limited sequence generation remains an
open problem and is a direction for future work.
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Figure A1. Point clouds from DUSt3R [13] optimized with sparse input views on the Replica dataset. The yellow parts represent unob-
served regions, e.g., regions that are outside the field of view or occluded. Note that the ceilings are removed for better visualization.
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Figure A2. Generated frames from the video diffusion model with and without the proposed guidance. The numbers at the top indicate the
frame IDs. The first frame corresponds to an image from the sparse input views, while other frames are generated. Without guidance, the
generated sequences exhibit significant inconsistencies: (i) appearance inconsistencies, highlighted by the blue boxes; and (ii) hallucinated
elements that do not exist in the scene, highlighted by the red boxes. In contrast, with the proposed guidance, the generated sequences are
more plausible and consistent.

3-view 6-view 9-view
PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

Replica
Baseline 3DGS 19.87 0.794 0.178 22.80 0.818 0.179 24.81 0.863 0.124
InstantSplat [2] 20.49 0.766 0.226 20.35 0.760 0.290 18.44 0.708 0.373
Ours 23.98 0.848 0.136 26.35 0.872 0.122 27.42 0.891 0.111

Table A1. Our method brings performance improvement over the baseline with different number of input views, and consistently outper-
forms another strong sparse-input modeling baseline InstantSplat [2].



Replica 6-view Full Image Observable Regions Unobservable Regions
PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

Baseline 3DGS 22.80 0.818 0.179 25.45 0.860 0.129 14.27 0.967 0.029
w/ Vanilla Generation 23.69 0.840 0.160 25.00 0.870 0.119 17.11 0.977 0.025
Ours 26.35 0.872 0.122 27.12 0.894 0.091 20.85 0.985 0.020

Baseline 3DGS+LaMa [12] 24.56 0.833 0.167 25.45 0.860 0.129 17.80 0.981 0.021
Baseline 3DGS+SDInpaint [9]⇤ 25.15 0.853 0.141 26.13 0.878 0.104 19.25 0.982 0.022

Table A2. Analysis of performance regarding observable and unobservable regions. ⇤ refers to incorporating our trajectory initialization
strategy. The methods in the second block utilize inpainting models.

3-view 6-view 9-view
PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

RealEstate10K
ReconFusion [14] 25.84 0.910 0.144 29.99 0.951 0.103 31.82 0.961 0.092
CAT3D [3] 26.78 0.917 0.132 31.07 0.954 0.092 32.20 0.963 0.082
Ours 25.03 0.871 0.136 30.62 0.944 0.069 32.45 0.955 0.062

LLFF
ReconFusion [14] 21.34 0.724 0.203 24.25 0.815 0.152 25.21 0.848 0.134
CAT3D [3] 21.58 0.731 0.181 24.71 0.833 0.121 25.63 0.860 0.107
Ours 21.35 0.746 0.173 25.13 0.851 0.102 26.29 0.880 0.084

Table A3. Comparisons with ReconFusion [14] and CAT3D [3] on the RealEstate10K and LLFF datasets.

ScanNet++ [16] Replica [11]
a2ccc 8a20d 94ee1 78318 avg office2 office3 office4 room0 room1 room2 avg

18.28 23.48 16.93 19.63 19.58 17.43 19.04 19.08 17.46 16.57 19.16 18.12
Mip-NeRF [1] 0.759 0.799 0.725 0.735 0.755 0.539 0.685 0.727 0.762 0.721 0.808 0.707

0.351 0.321 0.431 0.451 0.389 0.486 0.421 0.393 0.342 0.386 0.317 0.391

13.90 17.69 14.34 12.21 14.54 13.66 12.53 11.51 12.58 14.11 14.00 13.07
InfoNeRF [7] 0.662 0.691 0.627 0.605 0.646 0.463 0.545 0.592 0.618 0.689 0.678 0.598

0.468 0.437 0.516 0.558 0.495 0.612 0.623 0.624 0.542 0.435 0.477 0.552

20.67 23.00 15.34 20.02 19.76 19.12 19.35 18.97 19.84 17.18 19.46 18.99
DietNeRF [5] 0.751 0.776 0.627 0.725 0.719 0.612 0.695 0.419 0.783 0.749 0.797 0.676

0.385 0.363 0.516 0.459 0.431 0.458 0.417 0.721 0.34 0.386 0.343 0.444

19.93 22.37 19.42 18.94 20.17 20.89 21.06 20.25 22.55 19.69 21.43 20.99
FreeNeRF [15] 0.759 0.791 0.762 0.711 0.756 0.688 0.735 0.750 0.831 0.781 0.807 0.765

0.307 0.299 0.417 0.449 0.368 0.359 0.340 0.364 0.234 0.325 0.321 0.324

21.81 25.60 20.05 21.36 22.21 22.79 23.83 23.08 24.01 19.66 21.87 22.54
S3NeRF [18] 0.801 0.811 0.784 0.753 0.787 0.728 0.773 0.801 0.862 0.808 0.825 0.800

0.324 0.330 0.357 0.444 0.364 0.326 0.309 0.301 0.213 0.277 0.293 0.287

20.65 23.49 20.38 21.11 21.41 25.03 23.60 22.14 20.32 22.68 23.07 22.80
3DGSl [6] 0.824 0.857 0.821 0.764 0.817 0.873 0.858 0.834 0.720 0.802 0.824 0.818

0.193 0.136 0.218 0.298 0.211 0.141 0.147 0.180 0.204 0.203 0.196 0.179

19.10 21.21 17.55 18.20 19.01 22.68 18.40 12.31 12.60 18.87 20.91 17.63
DNGaussian [8] 0.765 0.781 0.743 0.730 0.755 0.843 0.789 0.644 0.534 0.708 0.790 0.718

0.343 0.292 0.382 0.450 0.367 0.233 0.291 0.628 0.722 0.397 0.338 0.435

20.47 23.73 18.90 19.61 20.68 25.31 23.34 21.83 20.33 22.59 22.88 22.71
DNGaussianl [8] 0.805 0.842 0.784 0.722 0.788 0.890 0.853 0.837 0.729 0.800 0.820 0.821

0.213 0.183 0.287 0.357 0.281 0.124 0.161 0.197 0.226 0.208 0.219 0.189

19.19 18.98 15.77 17.87 17.95 20.70 20.26 21.62 19.65 19.23 19.89 20.22
FSGS [19] 0.760 0.735 0.719 0.708 0.730 0.802 0.790 0.825 0.654 0.712 0.779 0.760

0.321 0.316 0.415 0.442 0.373 0.266 0.255 0.271 0.315 0.374 0.342 0.304

21.28 22.56 20.28 20.79 21.23 24.37 23.41 23.45 21.02 23.56 22.14 22.99
FSGSl [19] 0.826 0.844 0.815 0.767 0.813 0.873 0.856 0.862 0.759 0.823 0.822 0.833

0.219 0.193 0.267 0.350 0.257 0.194 0.174 0.189 0.198 0.205 0.270 0.205

25.21 25.10 23.10 22.16 23.89 27.46 26.81 27.43 24.85 26.00 25.53 26.35
Ours 0.857 0.882 0.860 0.803 0.850 0.916 0.902 0.897 0.796 0.851 0.872 0.872

0.157 0.118 0.201 0.269 0.182 0.083 0.099 0.122 0.145 0.142 0.142 0.122

Table A4. Per-scene performance of various models on the ScanNet++ and Replica datasets. For each method, the three rows represent
PSNR, SSIM, and LPIPS, respectively. avg indicates the average performance across all scenes in each dataset. Including our approach,
3DGS-based methods marked with l are initialized with the point cloud from DUSt3R [13].
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Figure A3. Qualitative comparisons between other works on Replica and ScanNet++ datasets. All 3DGS-based methods are optimized
using the initialized point cloud from DUSt3R [13].
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