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6. Network and parameter details
For the image encoder, We use ImageNet-pretrained
ResNet-50 with frozen batchnorm layers and discard the
last classification layer as the CNN backbone. The Trans-
former encoder contains 6 blocks and the Transformer de-
coder contains 6 block. Each attention layer has 8 attention
heads. Additive dropout of 0.1 is applied after every multi-
head attention and FFN before layer normalization. The
weights are randomly initialized with Xavier initialization.
The intermediate size of the feedforward layers in the trans-
former blocks is set 2048 and the size of the embeddings d
in the transformer is set 256. The number of object (region)
queries N is set to 100 and the maximum number of objects
M is set to 120. For the bounding box encoder, we utilize 2-
layer MLP which transforms the bounding box embedding
into 256 dimensiton and multiple it with the embedding ob-
tained from the Transformer decoder, and then use 3-layer
MLP to map it to 4-dim embeddings.

7. Computational cost
To compare the computation costs of different methods, we
show the number of Params, FLOPs and inference time of
PlaceNet, SAC-GAN, TopNet and BOOTPLACE in Table 4.
Our method requires slightly more parameters than the
other methods. The theoretical computation cost (FLOPs)
of our method is 7x larger, but is similar to DETR-based
detection models. We also tested the inference time on the
Cityscapes validation set using an Nvidia GeForce GTX TI-
TAN X with a batch size of 1. The inference time per sam-
ple of our method is less than 1 second, significantly faster
than TopNet (2.7 seconds) and similar to PlaceNet. There-
fore, despite the higher FLOPs, the computational complex-
ity of our method is manageable and affordable, with effi-
cient real-world inference times.

8. Loss function analysis
In Figure 13, we compare the impact of various loss func-
tions. The regression loss, with sparse annotation, poses
challenges in training the model effectively. Gaussian as-
signed loss overlooks the impact of scaling and fails to
accommodate multi-peak distributions for possible place-
ments. Sparse contrastive loss supports the fluctuation of
neighboring placements but lacks accurate constraints for
complex scenes with location-varying placements. Our pro-
posed loss function is derived from bounding box loss using
Generalized IOU loss, offering more precise constraints on
box scaling.
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Figure 12. Multi-object placement. Two cars and one person
(top), one car and two people (below) are composed into the scene.

9. Multi-object placement
Compared to single-object placement, multi-object place-
ment is significantly more challenging as it necessitates an
understanding of the prior state of composed objects, scene
objects and background image. Though our network makes
parallel bounding box predictions, it has learned a robust
correspondence between objects and their associated re-
gions. In Figure 12, we illustrate the potential for compos-
ing three objects into street scenes, showing the capability
of our network to learn object orientation and the distribu-
tion of various object categories.

10. Dataset construction
In Figure 14, we illustrate the data construction process for
the Cityscapes [11] dataset, which is applicable to other
datasets. We start with the source image 1 and employ a
pretrained MaskFormer [9] model for panoptic semantic
segmentation 2 , jointly performing semantic and instance
segmentation. Scene primitives are manually categorized
into object classes, including car, person, rider,
train, bus, bicycle, truck, motorcycle,
resulting in binary object masks 3 . To obtain object-free
backgrounds, we dilate the binary object masks to address
boundary inaccuracies and obtain dilated object masks 4 .
The next step involves using pretrained LaMa [41] inpaint-
ing model to remove objects, yielding inpainted images 7 .
As many segmentation models tend to classify shadows
as background, we manually remove these shadows using
an online PhotoKit tool, refining the background image to
obtain corrected inpainted images 8 . Simultaneously, we
create an object pool 5 consisting of both intact objects



PlaceNet (ECCV’20) [51] SAC-GAN (IEEE TVCG’22) [53] TopNet (CVPR’23) [55] BOOTPLACE (ours)

# Params (M) 35.9 35.9 25.0 41.4
# FLOPs (G) 4.40 6.96 6.79 44.4
Inference time (sec) 0.68 0.1 2.7 0.27

Table 4. Comparison of computational cost and model parameters tested on Cityscapes dataset.

TopNetSource image

Object

Regression

 Generalized IOU Loss

Candidate GT

Object-background joint distribution Local region’s distribution

TopNet (Gaussian) BOOTPLACE (ours)

Figure 13. Different losses exemplified in 1D space. The yellow marks, depicted with varying intensities, represent the constraint intensity.
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Figure 14. Data preparation of background inpainted images and corresponding scene objects processed from source images.

Figure 15. Data preparation for boundary harmonization. The
boundary dilated regions are automatically segmented by dilation
of object silhouette.

and those that are partially occluded, each with varying
resolutions. After manual curation, we retain only the
intact objects, resulting in an intact object pool 6 with
their bounding box coordinates. After data cleaning, we
construct a multi-object dataset including 2,953 training
images with 22,270 objects and their corresponding
ground-truth labels, as well as 372 testing images with
2,713 objects.
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Figure 16. Harmonization results of composite Cityscapes samples. Zoom in to see visual details.

TopNet BOOTPLACE (Ours)

Encoder ViT-small CNN + MLP + Transformer encoders
Decoder 2D upsampling Transformer decoder + MLPs
Output 3D heatmap Bbox + class predictions
Losses Sparse contrastive + range Bbox regression + class prediction + association
Training AdamW optimizer + lr=1e-5 AdamW optimizer + le= 4e-4

Table 5. TopNet vs BOOTPLACE (ours).

PlaceNet SAC-GAN TopNet OursSource image

Figure 17. Comparison of w/o (row 1 and 3) vs w/ (row 2 and 4)
object compositing for two examples on object replacement task.

11. Method comparison with TopNet
We provide comparisons between TopNet and BOOTPLACE
in architecture and training strategy in Table 5.

12. Image blending
To address boundary artifacts arising from copy-paste ob-
ject composition, we employ two distinct methods: (1) use
a diffusion model initially designed for image inpainting
to harmonize boundaries. We finetune the Stable Diffu-
sion Inpainting model without prompt conditioning 2 on
Cityscapes objects. This involves extracting object-centric
patches and dilating their masks to create boundary masks,
as depicted in Figure 15. Once a sufficient number of such

2https://github.com/lorenzo-stacchio/Stable-Diffusion-
Inpaint/tree/1b44f2f9e4f233f68d48c56b68b9c111c1538d4d

Copy-paste ObjectStitch
FID (#) LPIPS (#) FID (#) LPIPS (#) Scale

PlaceNet [51] 52.02 0.088 77.67 0.217 0.204
SAC-GAN [53] 42.89 0.066 63.44 0.194 0.156
TopNet [55] 38.21 0.043 49.74 0.189 0.079
BOOTPLACE (ours) 58.74 0.105 79.50 0.246 0.310

Table 6. Quantitative comparison using FID and LPIPS.

patch-mask pairs are collected, we finetune the model to
harmonize boundary region. Figure 16 shows the visual per-
formance of image harmonization on Cityscapes samples.
(2) combine placement learning with identity-preserving
compositing methods such as ObjectStitch [40] for visual
refinement, as shown in Figure 17. This process signif-
icantly reduces boundary artifacts while naturally generat-
ing shadows, resulting in an enhanced level of realism com-
pared to compositions without harmonization.

13. Evaluation on FID and LPIPS
In Table 6, we evaluate plausibility of composite images us-
ing FID and LPIPS on the Cityscapes dataset. We observe
that both metrics are strongly correlated with bbox scale,
where smaller bounding boxes result in fewer modifications
to the image and correspondingly lower FID and FPIPS val-
ues. Therefore, they are not suitable metrics for evaluating
placement quality, which are excluded from evaluation.

14. More qualitative results
We show qualitative results of object placement on
Cityscapes dataset in Figures 18 and 19, object reposition
on Cityscapes dataset in Figures 20 and 21, and object repo-
sition on OPA dataset in Figure 22.

15. More decoder attention visualization
We provide additional visualization results showing the dis-
tribution of the detection decoder in Figure 23.



PlaceNetTarget imageObject SAC-GAN TopNet BOOTPLACE (ours)

Figure 18. Qualitative results of single object placement on Cityscapes dataset. Objects are randomly chosen from its testing set.
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Figure 19. Qualitative results of object placement on Cityscapes dataset. Objects are randomly chosen from its testing set.
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Figure 20. Qualitative results of object reposition on Cityscapes dataset.
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Figure 21. Qualitative results of object reposition on Cityscapes dataset.
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Figure 22. Qualitative results of object reposition on OPA dataset.
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Figure 23. Decoder attention visualization of Cityscapes samples.
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