
Appendix: Bayesian Test-Time Adaptation for Vision-Language Models

Lihua Zhou1, Mao Ye2, Shuaifeng Li2, Nianxin Li2, Xiatian Zhu3, Lei Deng4,
Hongbin Liu1,5, Zhen Lei1,5,6,7*

1 CAIR, HKSIS, CAS, 2 UESTC, 3 University of Surrey, 4 Shenzhen University,
5 MAIS, Institute of Automation, CAS, 6 SAI, UCAS, 7 M.U.S.T

1. Algorithm complexity analysis
In this section, we analyze and compare the complex-
ity of our method BCA with the baseline method CLIP.
Assume that BCA uses M class embeddings U =
[µT

1 ;µ
T
2 ; · · · ;µT

M] ∈ Rd∗M , where d is the is the di-
mension of the embedding and T represents transpose, and
V = [P (Y |µ1), P (Y |µ2), · · · , P (Y |µM)] ∈ RM∗K for
test time adaptation. When a sample xi arrives, BCA needs
to complete the following steps to get the prediction for the
sample xi:
1. Map sample xi to the visual embedding fv

i .
2. Calculate the probability of belonging to each class em-

bedding P (U |xi) = Softmax(fv
i ∗U).

3. Compute the final prediction by integrating the prior
P (Y |xi) = P (U |xi) ∗ V .

4. Update U [s] and V [s] when P (U [s]|xi) > τ , where
s = argmaxmP (U [m]|xi).

For the first step, the required time t1 is mainly affected by
the visual backbone. For the second step, the required time
t2 can be divided into the calculation of fv

i ∗U , with a com-
plexity of O(d∗M), and the softmax operation, with a com-
plexity of O(M), so the overall complexity is O(d ∗ M).
For the third step, the required time t3 is used to calculate
of P (U |xi) ∗ V , and its complexity is O(K ∗ M). Com-
pared with the first three steps, the the required time t4 for
the fourth step involves not only the completion of the cal-
culation t4−cal, but also the reading and writing of memory
t4−rw. The first part t4−cal is used to calculate updated
class embeddings and priors, which is first used to deter-
mine whether it exceeds the threshold τ , with a complexity
of O(M), and then used to update U [s] and V [s], with a
complexity of O(d+K). Please note that the update in the
fourth step will only be executed if the required conditions
are met, so its complexity is sometimes only O(M).

Since current deep networks usually require a lot of ma-
trix operations, the first step t1 usually takes the longest
time. Generally speaking, d > K, which means O(d ∗
M) > O(K ∗ M), that is, the time required for the sec-

*Corresponding author

Table 1. Analysis of the required time for each step on Cross Do-
main benchmark.

t1 t2 t3 t4−cal t4−rw

BCA-RN50 217.50s 4.11s 0.64s 10.22s 4.19s
BCA-ViT-B/16 208.86s 3.18s 0.63s 10.25s 4.32s

ond step t2 is also greater than that for the third step t3.
In the fourth step, the update is just some very simple op-
erations, so it takes the shortest time t4−cal. Therefore,
theoretically, t1 > t2 > t3 > t4−cal. To verify this,
we verify it on the Cross Domain benchmark, as shown in
the Table 1. The results show that while t1 remains the
longest step, consistent with our theoretical analysis, the
actual running time for t4−cal is significantly longer than
both t2 and t3. Specifically, for both BCA-RN50 and BCA-
ViT-B/16, t4−cal takes approximately 10 seconds, which
is much longer than t3 (around 0.64s for BCA-RN50 and
0.63s for BCA-ViT-B/16) and even longer than t2 (4.11s
for BCA-RN50 and 3.18s for BCA-ViT-B/16). This dis-
crepancy can be attributed to the following reasons:
1. Serial Operations: The update operations in t4−cal in-

volve multiple serial steps, such as condition checks and
sequential updates of multiple variables. These serial op-
erations cannot be fully parallelized, leading to increased
time overhead. In contrast, t2 and t3 primarily involve
matrix operations, which can be efficiently parallelized
on the GPU. Matrix operations are highly optimized in
modern deep learning frameworks, allowing them to run
much faster despite their higher theoretical complexity.

2. Kernel Launch Overhead: Frequent kernel launches
and synchronization operations in t4 can add significant
overhead. While t2 and t3 do not involve read and write
operations to external variables; they operate on local
variables, further reducing memory access overhead.
Therefore, while the theoretical complexity suggests

t4−cal should be the shortest, practical considerations such
as serial operations and kernel launch overhead, can signifi-
cantly impact the actual running time. These factors explain

1

Figure 1. Prior visualization on OOD benchmark.

why t4−cal is observed to be longer than both t2 and t3 in
practice.

Compared with CLIP, which only has the first two steps
and M = K, BCA further includes the third and fourth
steps. The total time required for the third and fourth steps
is less than 10% of the entire method. This also shows that
our method is very efficient.

Furthermore, we analyzed the memory usage of BCA
compared to CLIP. When M = K, BCA only requires ad-
ditional storage V on the basis of CLIP. Essentially, this
means storing an additional K ∗K elements. For example,
on Imagenet, which has 1000 categories, we only need to
store an additional 1000 ∗ 1000 matrix, which amounts to
1000 ∗ 1000 ∗ 4bytes ≈ 4M of extra memory. This ad-
ditional memory requirement is minimal compared to the
overall model size.

2. More Ablation Studies

Prior visualization. In this experiment, we visualize the
prior of the model after performing TTA on ImageNet and
its four variant datasets, and compared them with the fixed
prior of the CLIP model. Considering that ImageNet con-
tains a large number of categories, we selected the top 30
categories for visualization, as shown in Figure 1. Through
this experiment, it can be observed that even when classify-
ing the same categories, distribution discrepancies can lead

to significant differences in the model’s prior. This high-
lights the importance of dataset characteristics and distribu-
tions on model learning and prediction, and underscores the
importance of performing prior adaptation.

Table 2. Analysis of the number of hand-crafted prompts M on
ImageNet.

Method M = K M = 2K M = 3K M = 4K

CLIP-RN50 58.15 57.15 57.71 58.95
BCA-RN50 60.54 60.75 61.12 61.33
CLIP-ViT-B/16 66.74 66.18 67.39 67.48
BCA-ViT-B/16 69.24 69.63 69.95 70.05

Analysis of the number of hand-crafted prompts M . In
this experiment, we investigate the impact of using differ-
ent numbers of hand-crafted prompts on the experimental
results, as described in the method section. Notably, in
this experiment, we did not perform prompt ensemble
as in Section 4.2. The experimental results are shown in
Table 2. Specifically, when M = k, our hand-crafted
template is {a photo of a [Class k]}Kk=1. When
M = 2k, our hand-crafted template is {a photo of a
[Class k]}Kk=1 + {a origami [Class k]}Kk=1. When
M = 3k, our hand-crafted template is {a photo of a
[Class k]}Kk=1 + {a origami [Class k]}Kk=1 +
{art of the [Class k]}Kk=1. When M = 4k,

our hand-crafted template is {a photo of a
[Class k]}Kk=1 + {a origami [Class k]}Kk=1

+ {art of the [Class k]}Kk=1 + {itap of a
[Class k]}Kk=1. From the experimental results, we
can observe that as M increases, the performance of
BCA continues to improve, while this is not the case for
CLIP [2]. The reason is that CLIP does not update class
embedding to perform likelihood adaptation and prior
adaptation in the new environment, so it is greatly affected
by the hand-crafted prompts, while BCA is relatively less
affected.

Table 3. Prior Adaptaion Analysis Combined with TDA. Ima-
geNet: accuacy on ImageNet dataset. OOD Average: mean accu-
racy across four Out-of-Distribution datasets. CD Average: mean
accuracy across ten Cross Domain datasets.

Method ImageNet OOD Average CD Average
TDA-RN50 61.35 46.63 61.03
TDA+PA 62.09 47.52 62.23
TDA-ViT-B/16 69.51 63.89 67.53
TDA+PA 70.19 64.58 68.36

Prior Adaptaion Analysis Combined with TDA. In this
work, our core strategy is the introduction of prior adapta-
tion. To validate its generalization capability combined with
other likelihood adaptation, we integrate this strategy with
the existing likelihood adaptation method TDA [1], which
optimizes the model’s likelihood adaptation by continu-
ously adding visual embeddings as new class embeddings.
The experimental results are shown in Table 3. These results
demonstrate that prior adaptation effectively enhances the
generalization and adaptability of the TDA method, leading
to improved performance across multiple datasets and eval-
uation metrics. This also proves prior adaptation has a good
ability to integrate with other likelihood adaptation.

Table 4. Performance Comparison for the last 50% samples.
Visual backbone: ViT-B/16. I: ImageNet; A: ImageNet-A; V:
ImageNet-V2; R: ImageNet-R; S: ImageNet-S.

Method I A V R S
CLIP 67.89 49.78 61.36 77.27 48.44
CLIP+LA 69.17 59.06 63.75 80.08 50.07
CLIP+PA 69.34 59.75 64.11 79.78 50.28
BCA 70.68 61.99 65.48 81.14 51.36

Performance Comparison for the last 50% samples. In
this experiment, we aim to evaluate the long-term perfor-
mance and adaptability of different methods by focusing on
the last 50% of samples in OOD benchmark. This setup
helps us understand how well these methods can adapt to
new environments over time. We compared our method,

BCA, with CLIP on these later samples. The results show
that BCA consistently outperformed CLIP, achieving the
best performance across the last 50% of samples. This in-
dicates that BCA not only maintains its initial effectiveness
but also demonstrates strong adaptability to new and evolv-
ing environments. This robust performance over time high-
lights BCA’s potential for real-world applications where
data distributions can change dynamically. In conclusion,
the experimental results confirm that BCA is highly effec-
tive in adapting to new conditions, making it a promis-
ing approach for long-term deployment in vision-language
modeling tasks.

Table 5. Performance Comparison on OOD benchmark. Visual
backbone: ViT-L/14. I: ImageNet; A: ImageNet-A; V: ImageNet-
V2; R: ImageNet-R; S: ImageNet-S.

Method I A V R S
CLIP-ViT-L/14 74.04 53.88 67.69 87.42 63.18
TDA 76.28 61.27 68.42 88.41 64.67
BCA 77.09 61.62 69.93 88.27 65.41

Performance Comparisons on Larger-Scale VLMs. In
this experiment, we use ViT-L/14 as the visual backbone to
evaluate the performance of our proposed method, BCA,
on OOD benchmark. The goal was to assess BCA’s ef-
fectiveness with a lager visual backbone, which is a com-
mon requirement in real-world applications where handling
complex and diverse data is essential. The experimental re-
sults, shown in Table 5, demonstrate that BCA consistently
outperformed other state-of-the-art methods, such as CLIP
and TDA, across four of the five tested datasets. Specifi-
cally, BCA achieved the highest accuracy on ImageNet (I),
ImageNet-A (A), ImageNet-V2 (V), and ImageNet-S (S).
While TDA slightly outperformed BCA on ImageNet-R (R)
with an accuracy of 88.41%, BCA still maintained a high
accuracy of 88.27%. These results highlight BCA’s robust-
ness and adaptability in handling OOD data. The consis-
tent performance gains across multiple datasets indicate that
BCA can effectively leverage the rich feature representa-
tions provided by large-scale pre-trained models like ViT-
L/14. This is particularly important as the use of such mod-
els becomes increasingly prevalent in both research and in-
dustry.

Table 6. Ablation Study on Update Strategies for BCA. Visual
backbone: ViT-B/16. Dataset: ImageNet.

Update Strategy Accuracy (%)
Count-based 70.22
Momentum-based 70.08
Decay-based 69.92

Ablation Study on Update Strategies. We evaluated
BCA’s robustness across update strategies using ViT-B/16
on ImageNet. Table 6 shows that Count-based (70.22%),
Momentum-based (70.08%), and Decay-based (69.92%)
strategies yield comparable accuracies, with a variance of
less than 0.3%. This consistency highlights BCA’s robust-
ness to different update mechanisms, reinforcing the effec-
tiveness of its core design.

References
[1] Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmotaleb

El Saddik, and Eric Xing. Efficient test-time adaptation of
vision-language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 14162–14171, 2024. 3

[2] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 3

	Algorithm complexity analysis
	More Ablation Studies

