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In this supplementary material, we provide the detailed
description of obtaining the pixel-aligned frame-event data
in Sec. 1. Then, we further present the generalization of the
proposed method for unseen dynamic scenes in Sec. 2.1 and
unseen illumination scenes in Sec. 2.2 using the proposed
dataset. Next, we provide several analysis experiments about
the proposed method, including impact of boundary class
number in Sec. 3.1, sensitivity to frame-event calibration
error in Sec. 3.2, sensitivity to image blur in Sec. 3.3,
complexity of each component in Sec. 3.4, inference time
in Sec. 3.5, and weight sensitivity in Sec. 3.6. Finally, we
provide the qualitative comparison on various datasets from
Sec. 4.1 to Sec. 4.3.

1. Pixel-Aligned Frame-Event Dataset
The prerequisite for the spatiotemporal motion fusion is

to obtain the pixel-aligned frame and event data. To this end,
we collect the paired frame-event data via two steps, includ-
ing time synchronization and spatial calibration. Regarding
the issue of time synchronization, we utilize microcontroller
to generate two pulses with different frequencies but same
timestamp as external trigger to synchronize the time be-
tween frame and event cameras, including 30 Hz for frame
camera and 1M Hz for event camera. Regarding the issue of
spatial calibration, we divide this step into two sub-steps, i.e.,
hardware calibration and software calibration. As shown in
Fig. 1, in hardware, we set up a physically coaxial optical de-
vice with a beam splitter for frame and event cameras, which
allows the same light to pass through the same lens and enter
different cameras, thus achieving the overall field of view
alignment. In software calibration, we further perform a stan-
dard stereo rectification between frame data and event data,
and then fine tune the slight calibration errors via pixel offset
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Figure 1. Collection device and examples of the proposed pixel-
aligned frame-event dataset. A coaxial optical device is built to
collect frame and event data, covering various dynamic patterns
and illumination conditions.

[1]. In this way, we can obtain the spatiotemporal pixel-
aligned frame images and event stream. Furthermore, we
utilize the coaxial optical device to collect the pixel-aligned
frame-event dataset, which covers real complex scenes with
various dynamic patterns and various illumination conditions.
Regarding the issue of optical flow GT, we further introduce
LiDAR to obtain accurate scene depth, which is projected
to optical flow. It is worth mentioning that this dataset is the
first high dynamic scene optical flow benchmark, promoting
the optical flow community.
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Figure 2. Visual comparison of optical flows on unseen scenes with various dynamic patterns.

Boundary class number K EPE F1-all
2 0.65 2.24%
5 0.60 2.03%
10 0.58 1.96%
15 0.61 2.11%

Table 1. Discussion on the choice of boundary class number.

2. Generalization for Various Unseen Scenes

2.1. Generalization for Various Dynamic Scenes

In Fig. 2, we further verify the generalization of the
proposed method for unseen scene with various dynamic
patterns using the proposed dataset. Compared with the com-
peting multimodal method BFlow [2], the proposed method
is more robust to different degrees of dynamic patterns, and
the optical flow performance performs better with clear mo-
tion boundary. This demonstrates that the proposed common
spatiotemporal fusion framework is more adaptable to un-
seen dynamic scenes.

2.2. Generalization for Various Illumination Scenes

In Fig. 3, we further verify the generalization of the
proposed method for unseen scene with various illumination
conditions using the proposed dataset. As the luminance
becomes lower, the optical flows of competing methods
(e.g., Selflow [3] and BFlow [2]) becomes worse, while the
proposed method can still perform well.

Pixel offset (pix) 0 1 3 5 7 9
EPE 3.78 3.86 4.53 5.89 7.31 10.55

Table 2. Impact of frame-event calibration error on optical flow.

Blur kernel size (pix) 1 3 5 7 9
EPE 0.47 0.49 0.52 0.54 0.58

Table 3. Effect of blur degree on optical flow.

3. Discussion

3.1. Impact of Boundary Class Number

Boundary class number K is a parameter that measures
the degree of motion boundary degradation. As shown in
Table 1, the boundary class number is not as more as possible,
but there is a balance, namely 10. The reason is that motion
boundary classification depends on the probability threshold,
the larger the motion class number value, the larger the
probability threshold corresponding to the normal boundary
feature, increasing the risk of misclassification of abnormal
boundary features. Therefore, an appropriate boundary class
number is important to the final optical flow result.

3.2. Sensitivity to Frame-Event Calibration Error

We simulate the frame-event alignment degree via inten-
tional misalignment, and analyze the impact of the alignment
degree on optical flow in Table 2. We can observe that the
optical flow model is sensitive to pixel calibration errors. To
this end, we will apply dynamic networks (e.g., deformed
convolution) to align cross-modal data at the feature level.



(a) Frames (b) Selflow (frame-only) (c) BFlow (frame-event) (d) Ours (frame-event)
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Figure 3. Visual comparison of optical flows on unseen scenes with various illumination conditions.

Metric GMA
Our framework

Pyramid Ef Ee Transformer GRU Total
Runtime (ms) 137 19 19 15 80 22 155

Param (M) 5.91 2.19 1.80 1.79 7.53 1.06 14.37
Size (MB) 58.73 5.68 8.83 10.04 52.42 22.27 99.24

EPE 1.24 0.58

Table 4. Complexity comparison of different components.

3.3. Sensitivity to Image Blur
We also study the sensitivity of the proposed method to

the degree of image blur. As shown in Table 3, our method
performs well on degraded images with different blur kernels.
The main reason is that event data from our framework can
provide continuous motion knowledge with high temporal
resolution, contributing to enhancing the anti-interference
ability of the flow model to blur.

3.4. Necessity and Complexity of Each Component
The whole framework only looks complicated, but is a

simple end-to-end network during testing phase. Within the
proposed framework, common space is built to close the
modality gap, and interpretable optimization strategies are
introduced to model the spatiotemporal fusion. For end-to-
end inference, feature pyramid and transformer are used to
learn the above process. Moreover, we compare the perfor-
mance and efficiency of each component in Table 4, which
verifies that our method achieves a trade-off between perfor-
mance gains and computational costs. Overall, the whole
framework looks complex, but is necessary and efficient.

3.5. Inference Time
In Table 5, we choose inference time as the efficiency

metric of different competing methods (e.g., Selflow [3],
RAFT [4], GMA [5], E-RAFT [6], BFlow [2]) for optical
flow estimation, and RTX 3090 as the inference platform.
We can observe that the multimodal methods do take a little
more time to infer than the unimodal methods, but the perfor-
mance is significantly improved. The main reason is that the
multimodal methods need to process the data representation
of more modalities and fuse the cross-modal complementary
motion knowledge, causing the more computing resources.
Moreover, compared with other competing methods, the pro-
posed method can achieve state-of-the-art results within the
reasonable inference time.

3.6. Weight Sensitivity of Model Losses
To choose the optimal weight parameters, we conduct the

study on the weight sensitivity of the typical fusion losses
in Fig. 4, such as Lkl, LspaErr

corr , LtempErr
corr and Lconsis

flow . In
Fig. 4 (a), the K-L divergence loss Lkl is sensitive to the
training of the proposed fusion framework. If the weight



Method Selflow RAFT GMA E-RAFT BFlow ComST-Flow
Runtime (ms) 53.3 114.7 137.4 107.4 141.6 155.5

EPE 16.16 1.35 1.24 0.95 0.87 0.58
F1-all 78.07% 6.26% 5.12% 3.65% 2.89% 1.96%

Table 5. Discussion on inference time on image 640×480.

is too large, the cackpropagation gradient will disappear,
making the training curve coverage to zero. In Fig. 4 (b)
and (c), the larger the weights of LspaErr

corr and LtempErr
corr , the

more rapidly the fusion framework coverages. In Fig. 4 (d),
the flow consistency loss Lconsis

flow is robust to the framework
training. Therefore, we set the main fusion losses weights as
[λ1, λ3, λ4, λ5] as [0.01, 1.0, 1.0, 1.0].

4. Comparison Experiments
4.1. Comparison on Synthetic Dataset

The visual results of optical flow predicted by the pro-
posed multimodal method and the competing methods on
the synthetic Event-KITTI dataset are presented in Fig. 5.
The competing methods include unimodal method Selflow
[3] with frame-only and multimodal method BFlow [2] with
frame-event. We have two conclusion. First, the multimodal
methods are superior to the unimodal method. This is be-
cause these multimodal methods can fuse the complementary
knowledge between different modalities to improve optical
flow. Second, compared to the multimodal method BFlow
with direct fusion, the proposed method with common fusion
performs better.

4.2. Comparison on Real Dataset
We also show the visual results of the proposed method

ComST-Flow and the competing methods on the real DSEC
dataset with various illumination conditions in Fig. 6, where
we perform blurry effect and frame extraction on images to
simulate the spatiotemporal degradation. We have two obser-
vations. First, the frame-based method Selflow almost cannot
work normally in nighttime scenes, while the event-based
methods can still perform well. This is because event camera
has the advantage of high dynamic range to model the mo-
tion even in nighttime scenes. Second, the proposed method
is superior to other multimodal method BFlow in real scenar-
ios. The main reason is that other multimodal methods suffer
the large gap between frame and event modalities, while the
common-latent space of the proposed method bridges the
modality gap, thus promoting the spatiotemporal fusion of
motion features for optical flow.

4.3. Comparison on Event Optical Flow
In Fig. 7, we compare the state-of-the-art event optical

flow models (EV-FlowNet [7] and E-RAFT [6]) with our

event model on the real event stream from DSEC dataset. We
can observe that the optical flow estimated by EV-FlowNet is
over-smooth, and E-RAFT losses slight motion details in the
motion boundaries. Instead, our event optical flow E-ABDA
still works well, verifying its superiority.
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Figure 4. The weight sensitivity of model fusion losses.

(a) Frames (b) Events (c) Selflow (frame-only) (d) BFlow (frame-event) (e) Ours (frame-event)

Figure 5. Comparison of optical flows on synthetic Event-KITTI dataset.



(a) Frames (b) Events (c) Selflow (frame-only) (d) BFlow (frame-event) (e) Ours (frame-event)

Figure 6. Comparison of optical flows on real DSEC dataset.

(a) Frames (b) Events (c) EV-FlowNet (event-only) (d) E-RAFT (event-only) (e) Ours (event-only)

Figure 7. Comparison of event-based optical flows on event stream from DSEC dataset.
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