
CARE Transformer: Mobile-Friendly Linear Visual Transformer via Decoupled
Dual Interaction

Supplementary Material

6. Summary
We provide more details about our proposed method in the
supplementary material due to the lack of space in the main
body of the paper. We organize our supplementary material
as follows:
• In Section 7, i) we summarize the configuration for the

three types of our CARE Transformers, i.e., CARE-S0,
CARE-S1, CARE-S2; ii) we provide more details about
the architecture of our CARE Transformers, including
CARE block, multiscale local inductive bias, and dual in-
teraction module.

• In Section 8, i) we provide more visualized compar-
isons between recent typical Transformer models and our
CARE Transformers in terms of both accuracy and effi-
ciency.

• In Section 9, we visualize the training loss of our CARE
Transformers aiming to demonstrate that our asymmet-
rical decoupled learning framework can be easily opti-
mized.

• In Section 10, we provide additional proofs for our asym-
metrical decoupled learning strategy: i) ⅁ Proof 2 further
demonstrates that our ⅁ Proposition 3 (in Section 3.3 of
the main paper) still holds when learning local inductive
bias in multiscale receptive field; ii) ⅁ Proof 3 extends
⅁ Proof 1 (in Section 3.3 of the main paper) to the ver-
sion of using multi-head linear attention; iii) ⅁ Proof 4
demonstrates that when learning local inductive bias in
multiscale receptive field and adopting multi-head linear
attention at the same time, our ⅁ Proposition 3 remains
valid.

• In Section 11, we discuss the limitations of our current
study and outline our plans for future research.

7. CARE Transformers
We provide more details about the architecture of CARE
Transformers in this section. We first elaborate the config-
uration about CARE-S0, CARE-S1, and CARE-S2 in Sec-
tion 7.1. Then, we give the details of our CARE block, dual
interaction module, and multiscale local inductive bias in
Section 7.2

7.1. Configuration

We summarize the configuration for the three types of our
CARE Transformers–CARE-S0, CARE-S1, and CARE-
S2–in Table 6. The details are introduced in the following.
CARE-S0. The stem layer of CARE-S0 is implemented

Table 6. The configuration for our CARE-S0, CARE-S1, and
CARE-S2. In the table, “DMU” denotes the dynamic memory
unit. “Local Op” and “Global Op” denote the operations that are
utilized to learn local inductive bias and long-range dependencies
respectively.

CARE Transformers
Stages Tokens Layer Specification CARE-S0 CARE-S1 CARE-S2

1 h
4 × w

4

Stem
Kernel 4× 4 Convs, stride = 4

Dim 24 24 24

DMU
Initializer 2× 2 Convs, stride = 2

Dim 8 8 8

CARE Block
Num 2 3 3

Local Op 3× 3 and 7× 7 Depth-wise Convs
Global Op 1× 11 and 11× 1 Depth-wise Convs

Local/Global Dim 16/8 16/8 16/8

2 h
8 × w

8

Downsampling
Kernel 2× 2 Convs, stride = 2

Dim 48 48 48

DMU
Initializer 2× 2 Convs, stride = 2

Dim 16 16 16

CARE Block
Num 4 6 6

Local Op 3× 3 and 7× 7 Depth-wise Convs
Global Op 1× 11 and 11× 1 Depth-wise Convs

Local/Global Dim 32/16 32/16 32/16

3 h
16 × w

16

Downsampling
Kernel 2× 2 Convs, stride = 2

Dim 96 96 144

DMU
Initializer 2× 2 Convs, stride = 2

Dim 32 32 48

CARE Block
Num 8 10 10

Local Op 3× 3, 7× 7 Depth-wise Convs
Global Op Linear Attention

Local/Global Dim 64/32 64/32 96/48

4 h
32 × w

32

Downsampling
Kernel 2× 2 Convs, stride = 2

Dim 192 192 288

DMU
Initializer 2× 2 Convs, stride = 2

Dim 64 64 96

CARE Block
Num 4 6 6

Local Op 3× 3 and 7× 7 Depth-wise Convs
Global Op Linear Attention

Local/Global Dim 128/64 128/64 192/96

by using a 4 × 4 convolution with the stride set as 4. The
numbers of CARE blocks are set as 〈2, 4, 8, 4〉 for the four
stages with the feature dimensions set as 〈24, 48, 96, 192〉.
We adopt a asymmetrical learning strategy and set the di-
mensions of local and global features as 〈16, 32, 64, 128〉
and 〈8, 16, 32, 64〉 respectively. The dimensions of the dy-
namic memory unit are set as 〈8, 16, 32, 64〉 for the four
stages. Following [42, 56], we do not apply linear attention
to the first two stages of our models, as there exists more
noisy in the shallow layers of neural networks but linear
attention’s high entropy property makes it difficult to sup-
press the influence of noise information. So, we utilize a
1×11 and a 11×1 depth-wise convolution to capture long-
range information, which is also adopted in CARE-S1 and

(a) CARE Transformers (b) CARE Block

Downsample

Stage4: CARE Block
× 𝑵𝟒

Head

Downsample

Stage3: CARE Block
× 𝑵𝟑

Downsample

Stage2: CARE Block
× 𝑵𝟐

Stem

Stage1: CARE Block
× 𝑵𝟏

Dual interaction module

Linear
attention

Local bias

Asymmetrical decoupling

Global: ഥ𝐗t
s Local: ෩𝐗𝑡

𝑠

𝐗𝑡
𝑠 𝐙𝑡

𝑠

Dynamic
memory unit 𝐙𝑡−1

𝑠

If t = 1,
initialize 𝐙0

s
via
Equation (11)

1

4 Inputs 𝐗t−1
s

(c) Dual Interaction Module

𝟑 × 𝟑 𝐃𝐂𝐎𝐍𝐕 𝟕 × 𝟕 𝐃𝐂𝐎𝐍𝐕Concat

(d) Local Bias (multiscale)

Norm

𝟏 × 𝟏 𝐂𝐎𝐍𝐕

𝟑 × 𝟑 𝐃𝐂𝐎𝐍𝐕

𝟏 × 𝟏 𝐂𝐎𝐍𝐕

Concat

Inter1

Norm

𝟏 × 𝟏 𝐂𝐎𝐍𝐕

𝟑 × 𝟑 𝐃𝐂𝐎𝐍𝐕

𝟏 × 𝟏 𝐂𝐎𝐍𝐕

Concat

Inter2

split

ഥ𝐗𝑡
𝑠 ෩𝐗𝑡

𝑠 𝐙𝑡−1
𝑠

𝐗𝑡
𝑠 𝐙𝑡

𝑠

𝑑2

2

𝑑2

2

1

8

1

16

1

32

M
e

m
o

ry
 r

ep
la

y

𝑑
ℎ

𝑤

ℎ
𝑤

𝑑1
𝑑2

𝑑1 < 𝑑2

ℎ 𝑤

ℎ
𝑤

ℎ
𝑤

ℎ𝑤

𝑑′

split

Channel interaction

Spatial interaction

☞

☞

Channel interaction☞

෩𝐗𝑡
𝑠′

෩𝐗𝑡
𝑠′′

෩𝐗𝑡
𝑠

෩𝐗𝑡
𝑠

Figure 4. Architecture details of our CARE Transformers.

CARE-S2.
CARE-S1. We implement the stem layer of CARE-S1 by
using a 4 × 4 convolution with the stride set as 4, which
is the same as that in CARE-S0. The numbers of CARE
blocks are set as 〈3, 6, 10, 6〉 for each stage and correspond-
ingly the dimensions of features are set as 〈24, 48, 96, 192〉.
Moreover, we set the dimensions of local and global fea-
tures as 〈16, 32, 64, 128〉 and 〈8, 16, 32, 64〉 respectively,
while the dimensions of the dynamic memory unit are set
as 〈8, 16, 32, 64〉.
CARE-S2. We utilize a 4 × 4 convolution with the
stride set as 4 to implement the stem layer of our CARE-
S2. Moreover, the number of CARE blocks in each stage
is set as 〈3, 6, 10, 6〉 with the feature dimensions set as
〈24, 48, 144, 288〉. We set the dimensions of local and
global features in an asymmetrical manner as well, which
are set as 〈16, 32, 96, 192〉 and 〈8, 16, 48, 96〉 for the four
stages respectively. Additionally, for CARE-S2, we set the
dimensions of the dynamic memory unit as 〈8, 16, 48, 96〉.

7.2. CARE block

The CARE block is the key component of our CARE Trans-
formers. In this part, we give more details about our CARE
block.
Multiscale Local Inductive Bias. In CARE Transformers,
we learn local inductive bias in multiscale receptive field
as described in Figure 4 (d). For the input of local features
X̃s

t ∈ Rhw×d2 , we divide them into two parts, and utilize
a 3 × 3 and a 7 × 7 depth-wise convolution to process
them respectively, which can be described by the following
equations:

X̃s′

t , X̃
s′′

t = Split(X̃s
t , dim=1), (14)

X̃s′

t = DCONV3×3(X̃
s′

t), (15)

X̃s′′

t = DCONV7×7(X̃
s′′

t). (16)

Thereby, the model is endowed with the capability of being
aware of multiscale local information. The ablation studies
in Table 5 of the main paper indicate that learning local
inductive bias in multiscale receptive field is better than
using a 3 × 3 depth-wise convolution alone. In Section 10
of the supplementary material, we also provide ⅁ Proof 2
to demonstrate that when learning local inductive bias in
multiscale receptive field, the asymmetrical decoupling
strategy can still reduce the computational complexity of
our models.

Dual Interaction Module. Furthermore, we also introduce
the philosophy behind the design of our dual interaction
module, where the key component is the interaction block
(i.e., Inter1 and Inter2) as exhibited in Figure 4 (c). In each
interaction block, we consider both channel and spatial in-
teraction aiming to facilitate information exchange between
features.

We take the interaction block Inter1 as an example to ex-
plain the interaction process. As illustrated in Figure 5, in
Inter1, we first conduct the channel interaction between lo-
cal and global features by concatenating them together, and
utilizing a 1 × 1 convolution to realize information propa-
gation along channels and map the inputs to a high dimen-
sional space. After fusing the information between local

and global features, we further conduct the spatial interac-
tion by additionally applying a 3 × 3 depth-wise convolu-
tion to the learned high dimensional feature map, allowing
the fused local and global features to interact with the in-
formation from neighboring pixels and thereby considering
the local and global information in the spatial domain. At
last, an extra 1× 1 convolution is employed to perform the
channel interaction again and map the features back to the
original representation space. In this way, the information
in the learned local and global features can be fully consid-
ered. The interaction process between the fused local and
global features and the dynamical memory unit in Inter2 is
the same as that in the first interaction block.

Asymmetrical Setting of d1 and d2. In our CARE
block, we adopt an asymmetrical setting d1 = 1

2d2 (i.e.,
d1 = 1

3d and d = d1 + d2), where d1 and d2 represent
the channel dimension of decoupled feature maps fed into
linear attention and depth-wise convolution operations
respectively. Our asymmetrical setting can obviously
achieve better performance, e.g., achieving 82.1% accuracy
on ImageNet-1K and 2.0ms runtime latency per 224× 224
image on iPhone13. However, setting d1 = d2 (i.e.,
d1 = 1

2d) increases our model’s latency to 2.2ms but does
not improve the accuracy, indicating that our asymmetrical
learning strategy can further boost the efficiency of models
without largely sacrificing their accuracy. Moreover, setting
d1 = d dcreases the accuracy to 77.3% and increases the
latency to 2.5ms, which demonstrates the importance of
exploiting long-range dependencies in an asymmetrical
manner.

8. Additional Visualized Comparisons
Our method is based on linear attention, and thus we pro-
vide more comparisons between our CARE Transformers
and recent mobile-friendly visual Transformer models in
this section, of which results are summarized in Figure 6,
7, 8, and 10. As NAS is not adopted to search for the op-
timal architecture of our models, we do not exhaustively
compare CARE Transformers with methods using NAS al-
gorithms. We leave NAS-based CARE Transformers for our
future work.

8.1. ImageNet-1K

The comparisons between recent typical mobile-friendly
Transformer models and our CARE Transformers on the
image classification task of ImageNet-1K are summarized
in Figure 6. We have the following observations for these
results. At the same level of efficiency, our models clearly
have higher accuracy. For example, at the cost of 0.7
GMACs, our CARE-S0 can achieve 78.4% top-1 accuracy,
which is higher than that of FastViT-T8, SLAB-DeiT-T,
EMO-1M (i.e., the smallest-size models of FastViT, SLAB,

LocalGlobal

𝟏 × 𝟏 𝐂𝐎𝐍𝐕
Channel interaction

LocalGlobal

𝟑 × 𝟑 𝐃𝐂𝐎𝐍𝐕
Spatial interaction

LocalGlobal

𝟏 × 𝟏 𝐂𝐎𝐍𝐕
Channel interaction

Figure 5. Schematic illustration for the channel and spatial in-
teraction designed in the interaction block of our dual interaction
module. In the figure, we take the interaction between local and
global features (i.e., Inter1) as an example to introduce the inter-
action process.

CARE-S2

CARE-S1

CARE-S0

Figure 6. Visualized comparison of the balance between accu-
racy, latency, and GMACs for our CARE Transformers and recent
typical mobile-friendly Transformer models on the image classifi-
cation task of ImageNet-1K. In the figure, larger markers indicate
that models need to consume more GMACs. “SA” and “LA” in-
dicate that the methods are based on Self-Attention and Linear
Attention respectively. The latency is tested on iPhone13 with the
batch size set as 1 and the standard 224× 224 input resolution.

and EMO in Figure 6) by 1.7%, 3.8%, and 6.9% respec-
tively. Meanwhile, compared with the models having the
same level of accuracy, our CARE Transformers have ob-
viously higher efficiency. For example, our CARE-S2 is
about 6×, 6×, 6×, 4×, and 2× faster than FLatten-Swin-T,
SLAB-Swin-T, Agent-Swin-T, MobileAtt-PVT-v2-B2, and
PVT-v2-B2 (i.e., the largest-size models of FLatten, SLAB,
Agent, MobileAtt, and PVT-v2 listed in Figure 6). Our
CARE-S2 costs half the GMACs of MLLA-T and has 2.5×
faster speed on iPhone13, but its accuracy is only lower
than that of MLLA-T by 1.4% (For more details about the
comparisons between MLLA and our CARE Transformers,
please refer to Section 8.4). These comparison results indi-
cate that our CARE Transformers can achieve a better bal-
ance between accuracy and efficiency than the recent coun-
terparts.

CARE-S2
CARE-S1

CARE-S0

CARE-S2
CARE-S1

CARE-S0

CARE-S2

CARE-S1
CARE-S0

CARE-S2

CARE-S1

CARE-S0

CARE-S2
CARE-S1

CARE-S0

CARE-S2

CARE-S1

CARE-S0

Figure 7. Visualized comparison of the balance between accuracy, latency, and GMACs for our CARE Transformers and recent typical
efficient visual Transformer models on the object detection (the first row) and the instance segmentation task (the second row) of the
COCO dataset. The larger the marker, the more GMACs the model consumes. “SA” and “LA” indicate that the methods are based on
Self-Attention and Linear Attention respectively. The latency of models is measured on iPhone13 with the batch size set as 1 and the
512× 512 input resolution. We build the detection head of our CARE Transformers by using Mask R-CNN [21].

8.2. COCO

The comparisons in Figure 7 demonstrate the superiority
of our CARE Transformers in resource-constrained sce-
narios again. On the object detection task, our CARE-
S0, CARE-S1, and CARE-S2 outperform FLatten-PVT-T
and SLAB-PVT-T (i.e., the smallest-size models of FLat-
ten and SLAB listed in Figure 7) in both accuracy and ef-
ficiency. Although CARE-S2 has obviously less GMCAs,
it can still achieve comparable accuracy to FLatten-Swin-T,
Agent-Swin-T, SLAB-Swin-T, and Swin-T (FLatten-Swin-
T, Agent-Swin-T, and SLAB-Swin-T are the largest-size
models of FLatten, Agent and SLAB presented in Figure
7). Besides, CARE-S2 costs half of the GMACs of MLLA-
T and has 3× faster speed on iPhone13, yet its APb is lower
than that of MLLA-T by only 3.7%, which is acceptable.
Similar results can also be found on the instance segmenta-
tion task of the COCO dataset. For example, our CARE-
S2 has obviously higher efficiency than Swin-T, Flatten-
Swin-T, Agent-Swin-T, and SLAB-Swin-T (Flatten-Swin-
T, Agent-Swin-T, and SLAB-Swin-T are the largest-size
models of FLatten, Agent and SLAB listed in Figure 7)
while still maintaining comparable accuracy to these coun-
terparts.

8.3. ADE20K

The comparison results in Figure 8 also demonstrate the
competitive performance of our CARE Transformers on

CARE-S2

CARE-S1

CARE-S0

Figure 8. Visualized comparison of the balance between accu-
racy, latency, and GMACs for our CARE Transformers and recent
typical Transformer models on the semantic segmentation task of
ADE20K. The larger the marker, the more GMACs the model con-
sumes. “SA” and “LA” indicate that the methods are based on
Self-Attention and Linear Attention. We measure the latency on
iPhone13 with the batch size set as 1 and the 512 × 512 input
resolution. We build the segmentation head of our models using
Semantic FPN [24].

the semantic segmentation task of ADE20K. Our CARE-
S2 outperforms Swin-T, FLatten-PVT-T, and Agent-PVT-
T (FLatten-PVT-T and Agent-PVT-T are the smallest-size
models of FLatten and Agent listed in Figure 8) in both ac-
curacy and efficiency. Despite that the mIoU of our CARE-

RepViT-M1.0 CARE-S1
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
GM

AC
s

RepViT-M1.0 vs CARE-S1

RepViT-M1.5 CARE-S2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

GM
AC

s

RepViT-M1.5 vs CARE-S2

RepViT-M1.5 CARE-S2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

GM
AC

s

RepViT-M1.5 vs CARE-S2

RepViT-M1.5 CARE-S2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

GM
AC

s

RepViT-M1.5 vs CARE-S2

75

76

77

78

79

80

81

Im
ag

eN
et

-1
K

Ac
cu

ra
cy

 (%
)GMACs

ImageNet-1K Accuracy

75

76

77

78

79

80

81

82

83

Im
ag

eN
et

-1
K

Ac
cu

ra
cy

 (%
)GMACs

ImageNet-1K Accuracy

20

25

30

35

40

45

CO
CO

 A
Pb (

%
)

GMACs
COCO APb

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

CO
CO

 A
Pm

 (%
)

GMACs
COCO APm

Figure 9. The visualized comparison between RepViT [46] and our CARE Transformers in terms of accuracy and efficiency on COCO and
ImageNet-1K datasets.

S2 is slightly lower than that of Agent-Swin-T and FLatten-
Swin-T (FLatten-Swin-T and Agent-Swin-T are the largest-
size models of FLatten and Agent presented in Figure 8), it
has obviously better efficiency, e.g., the speed of CARE-S2
is about 3× faster than that of Agent-Swin-T and FLatten-
Swin-T. These results indicate that our CARE-Transformers
are more suitable to be deployed in resource-constrained
scenarios.

8.4. MLLA V.S. CARE

Our method can be seen as playing a step further on MLLA
[16], and therefore we provide more quantitative compar-
isons between MLLA and our CARE Transformers, which
are summarized in Figure 10. From the figure, we can see
that our CARE-S2 has obviously better efficiency than both
MLLA-T and MLLA-B but still maintains comparable ac-
curacy on all of the image classification, object detection,
instance segmentation, and semantic segmentation task. For
example, on the image classification task of ImageNet-1K,
our CARE-S2 just costs half the GMACs of MLLA-T and
has 2.5× faster speed on iPhone13, but its top-1 accuracy is
only 1.4% lower than that of MLLA-T. Meanwhile, CARE-
S2 requires only one-eighth the GMACs of MLLA-B, while
its top-1 accuracy is just 3.2% lower than that of MLLA-B.
Similar comparison results can be found on the other tasks
as well. For example, on the instance segmentation task of
COCO, the APm of CARE-S2 is lower than that of MLLA-

T by 3.1% and MLLA-B by 6%, but it has about 3× and
6× faster execution speed on the mobile device iPhone13.
These results indicate that our CARE Transformers are
more suitable to be deployed in resource-constrained sce-
narios, and demonstrate our decoupled learning approach
can achieve a better balance between accuracy and effi-
ciency.

8.5. RepViT V.S. CARE

We also compare our method with a recent convolutional
model RepViT [46], which is exhibited in Figure 9. The
experimental results shown in Figure 9 indicate that our
CARE-S1 can achieve higher accuracy than RepViT-M1.0
on the classification task of ImageNet-1K but still con-
sumes less GMACs. Meanwhile, our CARE-S2 can achieve
comparable classification accuracy to RepViT-M1.5 but has
obviously higher efficiency, e.g., CARE-S2 just needs to
cost 80% of the GMACs of RepViT-M1.5. Similar results
can also be found on COCO. These results demonstrate
the competitive performance achieved by our CARE Trans-
formers.

9. Visualization of Training Loss
In Figure 11, we also visualize the convergence of the loss
during training our CARE Transformers on the ImageNet-
1K dataset. The results in the figure indicate that the train-
ing loss of our CARE-S0, CARE-S1, and CARE-S2 con-

-T -T -T

(a) MLLA-T V.S. CARE-S2

(b) MLLA-B V.S. CARE-S2

Image classification Object detection Instance segmentation

Image classification Object detection Instance segmentation Semantic segmentation

Figure 10. The detailed comparisons between MLLA [16] and our CARE Transformers. Following [16], we build the detection head by
using Mask R-CNN [21] and utilize UperNet [53] to implement the segmentation head of our CARE Transformers. As [16] only applies
MLLA-B to the semantic segmentation task, we lack the comparisons between MLLA-T and CARE-S2 on the ADE20K dataset.

L
o

ss
 v

a
lu

e

Epoch

Figure 11. Visualization for the convergence of the loss dur-
ing training our CARE-S0, CARE-S1, and CARE-S2 models on
ImageNet-1K.

verges to a relatively small value within only a few train-
ing epochs (about 20 training epochs), indicating that our
CARE Transformers based on the asymmetrical decoupled
learning strategy can be easily optimized by using back-
propagation and stochastic gradient descent algorithms.

10. Additional Proofs

⅁ Proof 2. When learning local inductive bias in multi-
scale receptive field using Equation (14), (15), and (16),
our ⅁ Proposition 3 (in Section 3.3 of the main paper) can
still hold.

We can rewrite Equation 9 of the main paper to the mul-
tiscale version as follows:

Ω(∆) =
1

2
hw(k21 + k22)(d+∆) +

3

2
hw(d−∆)2. (17)

Therefore,

Ω(∆1)− Ω(∆2) (18)

=
3

2
hw(∆1 −∆2)(

1

3
k21 +

1

3
k22 +∆1 +∆2 − 2d). (19)

Let ∆1 > 0 and ∆2 = 0, we have

Ω(∆1)− Ω(∆2) =
3

2
hw∆1(

1

3
k21 +

1

3
k22 +∆1 − 2d).

(20)

As we set k1 = 3 and k2 = 7 in the paper, we can obtain,

Ω(∆1)− Ω(∆2) =
3

2
hw∆1(3 +

49

3
+ ∆1 − 2d) (21)

<
3

2
hw∆1(20 + ∆1 − 2d). (22)

Despite that the dimension of features is set as a small
value d = 24 in the first stage of our CARE Transform-
ers, it still satisfies Ω(∆1) − Ω(∆2) < 0, as ∆1 < d and
20 < d, proving that the asymmetrical setting (∆1 > 0)
still has less complexity compared to the symmetrical sce-
nario (∆2 = 0). In most cases, the dimension of features is
generally set to be larger than the value 20 in deep neural
networks.

We extend ⅁ Proof 1. (in Section 3.3 of the main paper)
to the version of using multi-head linear attention.
⅁ Proof 3. With the use of multi-head linear attention, our
asymmetrical setting d1 < d2 can still reduce computation
complexity .

We first rewrite Equation (8) into the multi-head version:

Ω = 2k2hwd2 + 4hwd21 + 2hw
d21
n
, (23)

where d1 and d2 denote the dimensions of local and global
features, k×k indicates the kernel size of the convolutional
local bias learner, and n represents the head number. Let
d2 − d1 = ∆, we have d1 = d−∆

2 and d2 = d+∆
2 due to

d1 + d2 = d and d2 − d1 = ∆. We can rewrite Equation
(23) as follows:

Ω(∆) = k2hw(d+∆) + (1 +
1

2n
)hw(d−∆)2. (24)

Accordingly, we have

Ω(∆1)− Ω(∆2) (25)

=
2n+ 1

2n
hw(∆1 −∆2)(

2n

2n+ 1
k2 +∆1 +∆2 − 2d)

(26)

Let ∆1 > 0 and ∆2 = 0, we also have Ω(∆1) − Ω(0) <
0 as ∆1 < d and the kernel size generally obeys k2 <<
d, which proves that our asymmetrical setting (∆1 > 0)
has less complexity compared to the symmetrical scenario
(∆2 = 0).

We can also extend ⅁ Proof 2 to the version of multi-
head linear attention.
⅁ Proof 4. When using Equation (14), (15), and (16) to
learn local inductive bias in multiscale receptive field and
employing multi-head linear attention at the same time, our
⅁ Proposition 3 (in Section 3.3 of the main paper) remains
valid.

We can rewrite Equation (17) of the supplementary ma-
terial to the multi-head version, just like the process given
in Equation (24):

Ω(∆) =
1

2
hw(k21 + k22)(d+∆) + (1 +

1

2n
)hw(d−∆)2.

(27)

Therefore,

Ω(∆1)− Ω(∆2) (28)

=
2n+ 1

2n
hw(∆1 −∆2)[

n(k21 + k22)

2n+ 1
+∆1 +∆2 − 2d].

(29)

Let ∆1 > 0 and ∆2 = 0, we have

Ω(∆1)− Ω(∆2) =
2n+ 1

2n
hw∆1[

n(k21 + k22)

2n+ 1
+∆1 − 2d]

(30)

<
2n+ 1

2n
hw∆1(

k21 + k22
2

+ ∆1 − 2d)

(31)

As we set k1 = 3 and k2 = 7, and adopt the asymmetrical
setting d1 = 1

2d2 (i.e., d1 = 1
3d, d2 = 2

3d, and ∆1 =
d2 − d1 = 1

3d), we can obtain,

Ω(∆1)− Ω(∆2) =
2n+ 1

2n
hw∆1(

9 + 49

2
+

1

3
d− 2d)

(32)

=
2n+ 1

2n
hw∆1(29−

5

3
d) (33)

In the first stage of our CARE Transformers, the feature di-
mension is set as a small value d = 24 but it still satis-
fies Ω(∆1) − Ω(∆2) < 0. As d > 24 in the subsequent
deeper layers of our models, they obviously obey the condi-
tion Ω(∆1)−Ω(∆2) < 0, which proves that our proposed
asymmetrical decoupled learning strategy (∆1 > 0) still
has less complexity compared to the symmetrical learning
way (∆2 = 0).

11. Limitation & Future Work
Our current work has two limitations. Firstly, we have not
yet employed neural architecture search (NAS) to optimize
the architectural design of our CARE Transformers. Sec-
ondly, due to our limited GPU resources, we do not apply
our approach to models with relatively larger size; however,
we believe that the proposed CARE mechanism can also
perform well with large models, as its superiority lies in the
more effective and reasonable use of local and global infor-
mation. We plan to address these limitations in our future
work. Recently, Segment Anything Model (SAM) [25] has
shown impressive zero-shot transfer performance. How-
ever, its heavy computation costs still limit its application in
resource-constrained scenarios. In the future, we plan to in-
corporate SAM with our CARE mechanism and utilize our
efficient CARE block to build the image encoder of SAM,
making it possible to be deployed to resource-constrained
devices.

