Code-as-Monitor: Constraint-aware Visual Programming for
Reactive and Proactive Robotic Failure Detection

Supplementary Material

The supplementary document is organized as follows:

¢ Sec. A: More Discussions like Technical Details, Limita-
tions, and Future Work.

* Sec. B: Implementation Details of Painter, including data
collection, training, and element pipeline details.

e Sec. C: Environment Configuration, including environ-
mental setups, control policies, and baseline details.

e Sec. D: Evaluation Details, including detailed task
definition, disturbances, and experimental results.

¢ Sec. E: More Ablation Studies.
¢ Sec. F: More Demonstrations of CaM.

A. More discussions

A.1. Methodology discussions

What contributes to generalization. @VLM’s intrin-
sic knowledge and reasoning enable task-level general-
ization, while geometric abstraction ensures generaliza-
tion across scenes and entities (e.g., objects, robots). The
constraint-based formulation seamlessly integrates both as-
pects, achieving overall framework generalization.

Proactive detection for long-term dynamics. Our frame-
work can potentially handle long-term dynamics by lever-
aging the Constraint Generator to decompose long-horizon
tasks into subgoals and enables proactive detection within
each subgoal to constrain the future state space rather than
directly predict future states. Moreover, failed subgoals
are re-planned with updated proactive constraints, ensuring
adaptability to long-term dynamic changes.

Key methodology compared to Rekep [7]. Our key
method differs from ReKep in two key aspects: (1) El-
ement extraction: ReKep simply relies on DINOv2 for
keypoint detection via 2D feature clustering, which of-
fers a limited representation of constraints and geomet-
ric relationships crucial for failure detection. In contrast,
our method achieves higher-order geometric abstraction by
leveraging ConSeg to extract constraint-aware objects/parts
in 2D space, then combining these with point clouds to inte-
grate 3D geometric constraints. (2) Code Generation: Un-
like ReKep, which lacks fine-grained guidance, our method
leverages these geometry-rich elements as visual prompts

on multi-view images to generate code more accurately ar
each subgoal’s beginning, enabling seamless integration
with various policies to form closed-loop systems.

Part segmentation for ambiguous or incomplete instruc-
tions. In our framework, we mainly leverage ConSeg’s
abilities to handle cases where instructions with ambiguous
or missing explicit part information. (1) We do not impose
whether the textual instructions contain part information in
our dataset collection pipeline. This allows the ConSeg to
possess a certain ability to handle ambiguous instructions.
(2) ConSeg architecture adopts a VLM-based design, lever-
aging VLM’s world knowledge to infer constraint-related
parts for unseen objects. Based on our experiments (see
Supp. F.4), ConSeg does demonstrate some generalization
ability, but its performance on unseen objects is weaker than
on objects within the training distribution.

A.2. Technical detail discussions

Executability and reliability of code. For executability,
we validate the code using the path coverage of White-box
Testing at the subgoal’s beginning, where the current state
is used as input to verify the accuracy of each logic branch
(i.e., every if-else block). If any error occurs during test-
ing, the code is regenerated. For reliability, we prompt
VLM to generate code that closely adheres to the given
specifications and requirements. As frequent VLM calls in-
crease hallucinations, we only invoke VLM once at each
subgoal’s beginning, making it less affected by hallucina-
tion and more reliable.

Failure threshold Selection. We use two ways: (1) manu-
ally initializing thresholds for common tasks in an external
knowledge base; (2) generating thresholds for unseen tasks
using VLM’s internal knowledge. We find that the system
remains robust to threshold selection in common settings,
but the impact of threshold variations under diverse condi-
tions remains unexplored and is left for future work.

Computational cost. The segmentation model is only in-
voked at the subgoal’s beginning to generate elements and
excluded during execution, ensuring real-time code-based
monitoring by tracking only the elements without high com-
putational cost. We also perform parallel inference of seg-
mentation models to accelerate at the subgoal’s beginning.

A.3. Limitations and Future Work

Despite promising results, our approach has several limita-
tions. First, using Visual Language Models (VLMs)—such

as off-the-shelf GPT for code generation and constraint-
aware segmentation models—inevitably leads to hallucina-
tion issues. Even with minimized VLM usage, inaccura-
cies in code generation and biases in segmentation may
persist. Integrating more relevant knowledge via meth-
ods like Retrieval-Augmented Generation (RAG) [10] or
reducing multimodal large language model (MLLM) hal-
lucinations [15] could alleviate these problems. Second,
while we unify reactive and proactive failure detection as
spatio-temporal constraint satisfaction problems and pro-
pose constraint elements for simplified real-time, high-
precision monitoring, the constraint element representation
has limitations: (1) It primarily focuses on failures de-
tectable through explicit displacement and rotation, render-
ing it less effective for force-direction-related failures with-
out noticeable displacement—for example, a robotic grip-
per failing to open a drawer due to incorrect force appli-
cation. (2) The simplified representation abstracts objects
and minimizes irrelevant visual details for efficient failure
detection but may overlook critical visual cues and multi-
modal inputs, such as flowing water or audible sounds from
a partially closed faucet, which are ignored in our current
framework. Thus, exploring more robust representations
that balance real-time precision with minimal information
loss or integrate richer multimodal inputs is a promising di-
rection for future research.

B. Constraint Painter

In this section, we first describe the data collection and
annotation process of the Constraint-aware Segmentation
Dataset. Next, we present the training details of the pro-
posed ConSeg model. Finally, it is followed by a detailed
explanation of the Element Pipeline.

B.1. ConSeg Data Collection

To ensure broader coverage of scenarios and objects in our
dataset, along with text-based instructions, we utilized the
BridgeData V2 dataset [20]. This large and diverse dataset
of robotic manipulation behaviors comprises 60, 096 trajec-
tories collected across 24 environments, encompassing 13
distinct skills.

The dataset collection pipeline is shown in Fig. 1. The
entire process is divided into three stages, i.e., trajectory de-
composition, assigning textual information, and dataset col-
lection. First, we decompose each trajectory’s instruction
and initial observation from BridgeData V2 into subgoals
for each stage, along with the constraints upon completion,
constraints during execution, the corresponding object-part
associations and element type for each constraint. Subfigure
1 in Fig. | illustrates a specific example, demonstrating the
decomposition of the task “Take cup off plate”. Notably, the
third subgoal, ‘“Place the cup on the stove”, indicates that
the initial observation ensures the decomposition process

fully understands the task’s contextual environment. Dur-
ing this process, we also obtain the constraint element type,
which serves as the ground-truth text response for part-level
constraint-aware segmentation. This decomposition is per-
formed using the off-the-shelf GPT-40 APIL

After obtaining the subgoals, constraints, and object-
part associations for each stage, we need to assign each
frame to its corresponding stage. Since BridgeData V2
does not provide per-frame annotations, we addressed this
issue by sampling pick-and-place data and leveraging the
additional information (e.g., gripper open/close states) pro-
vided by BridgeData V2 for assignment. The pick-and-
place task is typically divided into three stages: Approach,
Grasp and Transfer, and Place, corresponding to the gripper
states of open, closed, and open, respectively. Leveraging
the characteristics of the pick-and-place task, we complete
the frame-level assignment. Subfigure 2 in Fig. | illustrates
a specific example of the assignment process.

Using the obtained frame-level constraint-aware object
and part information, Instance-level and part-level segmen-
tations are performed using Grounded SAM [17] and Se-
mantic SAM [12], respectively. We conducted a sampled
manual inspection of the final annotations to filter out er-
rors and low-quality labels. Our final dataset is composed
of 10, 181 trajectories with 219, 356 images.

B.2. ConSeg Training Details

We adopt LISA’s [9] loss function, including the next-
token prediction loss for text output, and the combina-
tion of per-pixel BCE loss with DICE loss for mask out-
put. Our ConSeg-13B model is trained on an 8 NVIDIA
80G H800 GPU for two days with a batch size of 4. Our
training data comprises multiple components: Semantic-
Seg, ReferSeg, VQA, ReasonSeg, and ConstraintSeg, to en-
sure our model retains dialogue and reasoning segmentation
capabilities while achieving constraint-aware segmentation.
LISA inspires this training data setting. SemanticSeg in-
cludes ADE20K, COCO-Stuff, PACO-LVIS, and PASCAL-
Part. ReferSeg includes refCLEF, refCOCO, refCOCO+,
and refCOCOg. VQA includes LLaVAlnstruct-150k. Con-
straintSeg includes instance and part-level data.

The training setting described above is for the Con-
Seg-base model. Since the training data consists entirely
of real-world scenarios, there is a significant gap between
the simulation and real-world environments. To address
this, the ConSeg model used in the simulation experi-
ments is a fine-tuned version, called ConSeg-ft, finetuned
on a small amount of data collected from the simulator.
Specifically, we collect 100 trajectories from each simula-
tor, sampled frames at 1 Hz, and utilize either ground truth
masks from the simulator or annotations generated using
Grounded SAM and Semantic SAM. Notably, we use the
ConSeg-base model in real-world experiments, demon-

— 1.Trajectory Decomposition

Task: Take cup off plate
Initial Observation

1.Subgoal: Grasp the cup

- Relevant objects: end-effector, cup
- Relevant object parts: end-effector, cup handle
- Element Type: Point
- Constraints during execution: None
- Relevant objects: None
- Relevant object parts: None
- Element Type: None

Stepl: Decompose task instructions into subgoals, constraints, and object-part associations

2.Subgoal: Move the cup off the plate
- Constraints upon completion: Align the with - Constraints upon completion : The must be 18cm above the
the - Relevant objects: cup, plate
- Relevant object parts: cup, plate
- Element Type: Point
- Constraints during execution: The must remain within the
- Relevant objects: cup, Gripper
- Relevant object parts: cup handle, Gripper
- Element Type: Point

3.Subgoal: Place the cup on the stove
- Constraints upon completion : The is onthe
- Relevant objects: cup, stove
- Relevant object parts: cup , stove
- Element Type: Point
- Constraints during execution : None
- Relevant objects: None
- Relevant object parts: None
- Element Type: None

— 2. Assign Textual Information

4 Gripper Open — Subgoal 1

Step2: Assign each frame with subgoals, constraints, and object-part associations

% Gripper Close — Subgoal 2

() Gripper Open — Subgoal 3

/— 3. Dataset Collection

Step3: Leverage off-the-shelf models to auto-label and manually filter the results

Part-level Segmentation by Semantic SAM

Instance-level
Segmentation
by Grounded SAM

_—

Ny

Starting Frame of Subgoal 1

Ny

Instance-level Mask

| Fox

Manual Inspection

Oa B

Final Dataset

, N

Part-level Mask .

Figure 1. Dataset Collection Pipeline. Our data is sourced from BridgeData V2 [11]. The data collection process consists of three steps:
(1) Using GPT-4o [1] to decompose the task instruction based on the initial observation from the first frame of the trajectory, generating
subgoals along with two types of constraints for each subgoal (i.e., constraints during execution and upon completion) and object-part
associations. (2) Utilizing external references (e.g., gripper open/close states) to assign subgoals, constraints, and object-part associations
to each frame. (3) Leveraging off-the-shelf models (e.g., Grounded SAM [17], Semantic SAM [12]) to generate instance- and part-level
masks (blue mask in this figure) automatically, followed by manual filtering to curate the final dataset.

strating the model’s generalization capability across dif-
ferent scenarios.

B.3. Element Pipeline Details

Here, we provide additional details about the Constraint El-
ement Pipeline. We first filter out outliers after obtaining the
constraint-aware object/part point clouds. Next, we calcu-
late the 3D spatial bounds occupied by the remaining point
cloud and determine the voxel size for voxelization based
on the element type. We then perform point cloud cluster-
ing using the DBSCAN algorithm, which has advantages
over other methods, including identifying clusters of arbi-
trary shapes, eliminating the need to predefine the number
of clusters, and its effectiveness in high-density regions.

C. Environment Configuration

We first provide detailed descriptions of the simulators
(CLIPort [19], Omnigibson [11], RLBench [8]) and real-
world setups used in our study. We then discuss the low-
level control policies implemented in these environments.
Finally, we present the baselines and their implementation
specific to each environment. Notably, our framework,
CaM, is policy agnostic, meaning it can be adapted to
any control policy without requiring any modification.

C.1. Environmental Setup

The CLIPort [19] simulator' is a robotic manipulation
benchmark to gather extensive data for imitation learning

https://github.com/cliport/cliport

https://github.com/cliport/cliport

Front View Front View
i o i S
e e)
E
i
Top View Top View Wrist View
(a) CLIPort (b) Omnigibson

Front View

Left Shoulder View
[~ ali

Right Shoulder View

(c) RLBench (d) Real-world Setting

Figure 2. Environmental Setup of three simulators and one real-world setting. For CLIPort [19] and OmniGibson [11], we provide third-
person front and top views and the robot platforms are the URS arm and Fetch, respectively. RLBench [8] offers four camera views,
including front left shoulder, right shoulder, and wrist views, with the robot platform being Franka equipped with a gripper. We provide a
wrist and a third-person front view for the real-world setting, utilizing a URS robot equipped with a Leap Hand [18].

and train a language-conditioned multi-task low-level con-
trol policy. The environment features a URS robotic arm
with a suction cup as the end effector for pick-and-place
tasks and a spatula as the end effector for pushing tasks,
both operating on a black tabletop. We use two cameras: a
third-person front view and a top view to provide compre-
hensive perspectives of the tabletop, as shown in Fig. 2 (a).

The OmniGibson [11] simulator? offers a realistic setting
including a physics engine capable of supporting features
such as lighting rendering, gravity effects, and temperature
variations impacting objects within the environment. This
platform also provides an extensive array of pre-configured
scenes and objects, enabling researchers to customize se-
tups and train mobile manipulation robots. We select ver-
sion 1.1.0 for our study. This simulator involves a Fetch
robot equipped with a gripper as the end effector, operating
on a white tabletop. We utilize two cameras: a third-person
front view and a top view to provide comprehensive per-
spectives of the tabletop, as shown in Fig. 2 (b).

RLBench [8] simulator’ is a widely used benchmark for
robot manipulation, featuring tasks such as articulated ob-
jects and tool use. Researchers can gather data and train
low-level control policies using imitation learning or rein-
forcement learning within this environment. RLBench fea-
tures a Franka robotic arm with a gripper as its end effector,
operating on a brown tabletop. Four cameras provide com-
prehensive tabletop coverage, as shown in Fig. 2 (¢). Ad-
ditionally, RLBench uses a sampling-based motion planner
for motion planning given the next predicted action/pose.

In the real-world setup depicted in Fig. 2 (d), we utilize

Zhttps://github.com/StanfordVL/OmniGibson
3https://qithub.com/stecjam/RLBench

a fixed URS robotic arm with a Leap Hand [18] as the end
effector. Two RealSense D415 RGB-D cameras capture the
scene, one mounted on the wrist and the other positioned
for a third-person front view.

C.2. Control Policy

In CLIPort, we use a pre-trained low-level policy the CLI-
Port [19] simulator provides to control the robotic arm and
end effector. This policy can execute multi-task operations
based on language instructions with RGB observations and
its performance approaches perfection due to extensive im-
itation learning training. Notably, the policy is open-loop,
meaning it does not adjust its actions in response to dynamic
environmental changes (e.g., it will not immediately pick up
a dropped block during movement but will continue with
the previously planned actions).

In Omnigibson, We utilize ReKep [7] as our low-
level control policy, transforming long-horizon tasks into
a set of relationships between fixed keypoints at different
stages. At each stage, an optimization algorithm computes
these relationships to generate actions, enabling language-
conditioned closed-loop control. Notably, ReKep employs
a pre-trained large vision model (i.e., DINOv2 [16]) to pro-
cess raw RGB data, extracting semantically relevant key-
points. This approach also serves as the compared method
in our ablation study for extracting 3D points through
constraint-aware segmentation, showing our superiority.

In RLBench, we employ the Autoregressive Pol-
icy (ARP) [22] as the control policy, which generates the
next action based on historical observations and action se-
quences through an autoregressive process. This method
achieves state-of-the-art performance in the RLBench.

https://github.com/StanfordVL/OmniGibson
https://github.com/stepjam/RLBench

"
AR

Starting Frame
(a) Stack in Order

Ending Frame

Starting Frame

4
AR A SR

(b) Sweep Half the Blocks

Ending Frame Starting Frame

Ending Frame

(c) Use Rope to Close the Opening Square

Figure 3. CLIPort task demonstration. we present three types of tasks in our experiments, including the starting and ending frames.

In the real-world setting, We employ DexGraspNet
2.0 [21] as our low-level policy, which predicts the dexter-
ous hand’s grasping pose based on the scene’s point cloud
and facilitates the robotic arm’s action trajectory through
motion planning to achieve robust generalized grasping.
Notably, DexGraspNet 2.0 is an open-loop policy, which
means it does not adjust to environmental changes during
action execution. For example, if the target object’s position
shifts while the arm moves, the system does not modify its
motion plan. Therefore, it continues to execute toward the
originally intended location to complete the grasp, failing.

C.3. Baseline Details

In CLIPort, we compare three baselines: CLIPort [19],
CLIPort with Inner Monologue [6], and CLIPort with
DoReMi [5]. We slightly modify the original implementa-
tions of these three baselines to suit our task requirements.
(1) For CLIPort [19], the sole modification involves sub-
stituting the original oracle success detector with an off-
the-shelf VLM (i.e., GPT-40 [1]) used as a failure detector.
This change enables the robot system to determine whether
to transition to the next subgoal using image-based vision
question answering (VQA). Notably, CLIPort decomposes
the instructions into a list of subgoals before the task be-
gins and does not dynamically adjust or revert to previous
subgoals upon detecting a failure. (2) For Inner Mono-
logue [6], we replicate the implementation detailed in the
original literature, by employing CLIPort for the low-level
policy and an off-the-shelf VLM (i.e., GPT-40 [1]) as the
planner. This pipeline determines the next subgoal based
on the completed subgoals and current observations after
each subgoal concludes. Notably, Inner Monologue queries
the VLM only at the end of each subgoal, without consider-
ing events that occur during execution. (3) For DoReMi [5],
we reproduce the implementation according to the original
DoReMi paper and enhance it by replacing the VLM ini-
tially (i.e., BLIP2 [13]) used for repeated VQA-style queries
during robotic execution with a more powerful VLM (i.e.,
GPT-40 [1]). Additionally, we substitute its LLM, which
lacks environmental awareness, with the same GPT-40 to
serve as the task planner.

In Omnigibson, we compare two baselines: ReKep [7]

and ReKep with DoReMi [5]. (1) For ReKep, we directly
implement it using the official codebase. (2) For DoReMi,
it is implemented as described above.

In RLBench, we compare two baselines: ReKep [7] and
ReKep with DoReMi [5]. (1) For ReKep, we directly im-
plement it using the official codebase. (2) For DoReMi, it
is implemented as described above.

For the real-world evaluation, we compare two base-
lines: DexGraspNet 2.0 [21] and DexGraspNet 2.0 with
DoReMi [5]. (1) For DexGraspNet 2.0, we directly imple-
ment it using the official codebase. (2) For DoReMi, it is
implemented as described above.

D. Evaluation Details

In this section, we first detail the task specifications within
the simulator and real-world evaluations. Then, we intro-
duce the disturbances introduced in each task and the eval-
uation metrics used. Finally, we report the detailed experi-
mental results and our analyses, with additional results not
included in the main text due to space constraints.

D.1. CLIPort
D.1.1 Task, Disturbance and Metric Details

As shown in Fig. 3, we evaluate three tasks in CLIPort: (1)
“Stack in Order”: Given blocks in red, green, and blue on
a table, the robot must stack them with red at the bottom,
green in the middle, and blue on top. (2) “Sweep Half the
Blocks” With 40 blocks on the table, the robot must sweep
approximately half of them (with a permissible error margin
of £10%, i.e., 16 to 24 blocks) to a designated area. (3)
“Use Rope to Close the Opening Square”: The robot should
use a rope to enclose an open square, to enclose the area
sufficiently, rather than form a perfectly closed square.

We introduce two types of disturbances to the “Stack in
Order” task: (1) after the suction cup grasps a block, there
is a probability p at each step that the block will be released,
causing it to drop; (2) The predicted placement position by
the policy is perturbed by a uniform noise in the range [0, ¢
cm, potentially leading to block tower collapse.

For each task and disturbance type, we conduct 5 trials
using different seeds, each comprising 12 episodes. We as-

Table 1. Detailed Performance in CLIPort. We report the success rate and execution time for three tasks, compared to baseline methods.

Tasks with Success Rate(%) 1 Execution Time(s) |

disturbance CLIPort |+Inner Monologue +DoReMi +QOurs +Inner Monologue +DoReMi +Ours
Stack in p=0.0 |100.00 £ 0.00| 100.00 £ 0.00 100.00 £ 0.00 100.00 £ 0.00| 13.40+ 1.82 13.40 £ 1.82 13.40 £ 1.82
order with p=0.15 |56.67 £6.11| 81.67+6.11 83.33£5.17 95.00 £4.00 | 34.80+3.12 26.00+2.77 21.00 + 1.75
drop p p=0.3 | 21.67+£833| 7500895 76.67+9.52 8833+6.53| 42.80+3.18 34.20 £ 2.73 25.40 £ 2.95
Stack in g=1 90.00 £ 6.11 | 90.00 £6.11 96.67 =4.00 9833 £ 3.27 | 24.80+4.08 24.60+ 4.66 24.20 + 4.65
order with q=2 41.67 + 7.30 71.67 4+ 8.33 75.00 +5.17 83.33 +£5.17 39.40 £ 5.87 37.00 & 6.29 29.20 + 4.61
noise g q=3 15.00 £ 6.11 | 40.00+8.00 40.00+6.11 63.33 £8.33 | 5820+4.74 54.20 £ 6.02 36.80 + 4.61
Sweep Half the Blocks| 0.00 = 0.00 1833 £ 6.11 16.67 £8.95 75.00 + 11.55| 22.00 £2.91 16.60 + 1.33 16.40 + 1.00
UseRopetoClose 1 001 000 | 68334952 5833 £ 18.62 76.67 - 6.11| 4160+ 634 65.80 & 7.40 34.60 & 2.81
the Opening Square

Starting Frame Ending Frame

(a) Slot Pen

Starting Frame Ending Frame

(b) Stow Book

Starting Frame

Ending Frame

(c) Pour Tea

Figure 4. Omnigibson task demonstration. we present three types of tasks in our experiments, including the starting and ending frames.

sess performance based on success rate and execution time,
excluding the computational time for invoking the VLM.
Results are reported as mean values with 95% confidence
intervals. In the “Stack in Order” task, the robot must suc-
cessfully stack the blocks in the specified order into a tower
within 70 seconds, despite the two perturbations above. For
the “Sweep Half the Blocks” task, the pre-trained policy
aims to sweep blocks into a designated area. The robot
must stop the policy once half of the blocks are in the tar-
get region. If, after 30 seconds, the number of blocks in the
area falls within the required range (16—24), the task is con-
sidered successful. For the “Use Rope to Close the Open-
ing Square” task, the pre-trained policy attempts to close an
open rectangle into a perfect square using a rope. The robot
must detect when the rectangle is sufficiently enclosed and
immediately stop execution. Success is achieved if the robot
halts within 70 seconds, and the enclosure is complete.

D.1.2 Detailed Experiment Results

In Tab. 1, we present detailed results in CLIPort, including
those discussed in the main text and additional results.

In the “Stack in Order” task under severe interference
conditions, our CaM shows an improvement of 18.33%
and 17.5% in success rate over Inner Monologue [6] and
DoReMi [5], respectively, while also reducing execution
times by 38.7% and 14.4% compared to Inner Monologue
and DoReMi, respectively. The failure detection and recov-
ery processes are shown in Fig. 6 and Fig. 7.

In the “Sweep Half the Blocks” task, our CaM achieved
success rates that are 4.1 and 4.5 times higher than those of
Inner Monologue [6] and DoReMi [5], respectively. How-
ever, the success rate is not very high even in distraction-
free scenarios. This is attributed to the high density of track-
ing points in the scene, which increases the likelihood of
confusion and tracking errors, leading to inconsistent block
counts within the target area. The completion process of the

task is also illustrated in Fig. 8.

In the “Use Rope to Close the Opening Square”
task, our approach outperforms Inner Monologue [6] and
DoReMi [5] by 8.34% and 18.34% in success rates, respec-
tively, while also reducing execution times by 16.82% and
47.43% compared to Inner Monologue and DoReMi, re-
spectively. We find that calculating the distance between
the rope ends and the opening’s edges to determine closure
is more accurate than directly querying a VLM with an im-
age, allowing for earlier termination of the policy execution.
The complete processes of the task are illustrated in Fig. 9.

D.2. OmniGibson
D.2.1 Task, Disturbance and Metric Details

As shown in Fig. 4, in the OmniGibson environment, we
evaluated three distinct tasks: (1) Slot Pen: A pen placed
on a desk is picked up, rotated to a near-vertical position,
moved above a pen holder, and then inserted into the holder.
(2) Stow Book: A book located on a desk is picked up and
vertically positioned on a bookshelf. (3) Pour Tea: A teapot
on the desk is lifted, horizontally moved above a teacup,
and then tilted to pour tea into the cup.

We introduce three types of disturbances with varying
constraint elements for each task: (1) Slot Pen Task: Point-
level disturbances are applied as follows: (a) moving the
pen while the robot is grasping it, (b) forcing the robot to
release the pen mid-transfer, causing it to drop onto the ta-
ble, and (c) moving the pen holder while the robot attempts
to insert the pen. Despite these disturbances, the task is con-
sidered successful only if the robot can insert the pen into
the holder. (2) Stow Book Task: Line-level disturbances in-
clude: (a) rotating the book during the robot’s grasping pro-
cess, (b) altering the book’s pose during transfer to disrupt
its vertical alignment, and (c) reorienting the book horizon-
tally after it has been placed vertically on the shelf. Success
requires the robot to place the book vertically on the shelf
despite these disturbances. (3) Pour Tea Task: Surface-level
disturbances involve: (a) tilting the container forward or
backward during transfer, (b) inducing lateral tilts during
movement, and (c) restoring the container to a level position
during pouring. To succeed, the robot must prevent spillage
and complete the pouring task under these disturbances.

We conduct experiments on three tasks, each consisting
of one no-disturbance trial and three specific-disturbance
trials. Each trial was repeated 10 times, and the perfor-
mance was evaluated based on success rate, execution time
(including the computation time for invoking the VLM),
and the number of tokens used.

D.2.2 Detailed Experiment Results

Specific experimental results are detailed in the main text;
here, we present additional demonstrations in Sec.F.2.

D.3. RLBench
D.3.1 Task, Disturbance and Metric Details

As shown in Fig. 5, in RLBench, we evaluate six tasks
across three categories of manipulation: (1) Articulated
Object Interaction: (a) Open Drawer: Open the top
drawer (b) Put in Drawer Open the drawer and place
an item into the open drawer. (2) Rotational Manipula-
tion: (a) Screw Bulb Screw in the red light bulb. (b)
Turn Tap Turn the left tap. (3) Tool Use: (a) Drag
Stick——Use a stick to drag the cube onto the red target.
(b) Sweep to Dustpan Sweep dirt into the tall dustpan.

In RLBench, we avoid introducing additional distur-
bances, as its control policy naturally generates diverse
failures to validate the effectiveness of our framework.
The RLBench-trained policy lacks failure recovery mecha-
nisms; thus, any episode flagged as a failure by the detection
framework is deemed invalid, and a new episode is initiated.

For each task, we evaluate performance over 1, 000 valid
episodes (maximum 25 steps each), measured by the aver-
age success rate.

D.3.2 Detailed Experiment Results

Code with elements can generalize better to monitor di-
verse tasks. Notably, despite our training data lacking
information on articulated objects at both the instance
and part levels, our method effectively handles them,
accurately segmenting parts such as drawer handles.
In the “Open Drawer” task, CaM achieves a 98.1% suc-
cess rate, significantly outperforming DRM’s 90.6%. For
“Put in Drawer”, CaM reaches 98.3%, surpassing DRM’s
87.7% by 10.6 percentage points. We attribute this gen-
eralization to two factors: (1) the inherent prior world
knowledge of extensively pre-trained VLMs (e.g., SAM,
LLaVA), which enables generalization to unseen tasks;
and (2) our minimalist scheme that abstracts articulated
objects into geometric components via constraint ele-
ments, ignoring irrelevant details, enhancing the gener-
alizability.

We also demonstrate our method on additional unseen
tasks, such as rotational manipulation and tool use, where it
consistently outperforms baseline methods.

D.4. Real-world Evaluation
D.4.1 Task, Disturbance and Metric Details

We conduct real-world evaluations on two tasks: (1) Sim-
ple Pick & Place: The robot should pick and place objects
within 70 seconds. We include four kinds of objects: De-
formable, Transparent, Small Rigid, and Large Geometric,
with three objects in each category. The deformable objects
are Loopy, Dog, and Rabbit toys, which undergo deforma-
tion when grasped by the dexterous hand. The transparent

Articulated Objects

Starting "

Frame

Ending
Frame

(a)Open Dfawer (b) Putin Dl;awer (c) Screw Bulb

Rotational Manipulation

Tool Use

(e) Drag S;cick (f) Sweep to Dustpan

(d)Turn 'I;ap

Figure 5. RLBench task demonstration. we present six types of tasks in our experiments, including the starting and ending frames.

Table 2. Performance in RLBench. We report the success rate, compared to baseline methods.

Method Avg. Articulated Object Tool-Use Tool-Use
Success Rate (%) 1 | Open Drawer Putin Drawer | Screw Bulb Turn Tap | Drag Stick Sweep to Dustpan
RVT2 [4] 89.83 90.3 97.6 86.6 91.0 93.8 79.7
ARP [22] 91.27 93.9 91.0 86.4 96.6 88.1 91.6
+DRM [5] 87.97 90.6 87.7 83.1 93.3 84.8 88.3
+Ours 97.08 98.1 98.3 97.5 97.9 95.6 94.0

objects are a clear beverage bottle, a transparent glass, and
a clear shampoo bottle. The small rigid objects consist of
apple, pear, and peach models, while the large geometric
objects include a large plate, ball, and pyramid. (2) Rea-
soning Pick & Place: In cluttered scenes, the robot must
perform long-horizon tasks where the instructions contain
ambiguous terms (e.g., “animals” or “fruits” without speci-
fying particular types). Specifically, the tasks are: (a) “Clear
all objects on the table except for animals”, and (b) ”Grasp
the animals according to their distances to fruits, from near-
est to farthest”, with ambiguous terms underlined.

For both tasks, we introduce two identical disturbances:
(1) Moving the object during the robot’s grasping. (2) Re-
moving the object from the robot’s dexterous hand during
movement after grasping.

For each task, and each object involved in Simple Pick
& Place, we conduct 10 trials. For each long-horizon task
in Reasoning Pick & Place, we also conduct 10 trials. We
evaluate performance based on success rate and execution
time, including the computational time invoking the VLM.
Results are reported as mean values with 95% confidence
intervals. For the Simple Pick & Place, the robot has only
one opportunity to autonomously release the object held in
its gripper at a designated location. Any disturbance the
robot encounters allows for a return and reattempt at grasp-
ing if the robot successfully detects it. Success is defined as

meeting these conditions within 90 seconds. For the Rea-
soning Pick & Place task, the robot must clear all objects on
the table except for animals within 4 minutes for “Clear all
objects on the table except for animals”. In the task “Grasp
the animals according to their distances to fruits, from near-
est to farthest”, the robot must sequentially grasp the ani-
mals in the correct order within 2 minutes, despite human-
induced distractions such as moving animals or fruits. No-
tably, this task is particularly challenging because the
robot operates under an open-loop policy, preventing it
from using closed-loop feedback to handle the dynamic
distances between fruits and animals caused by exter-
nal disturbances. Therefore, a failure detection frame-
work is necessary to enable both reactive and proactive
real-time detection with high precision, monitoring the
distance changes and adjusting the grasping sequence
accordingly.

D.4.2 Detailed Experiment Results

In Tab. 3, we present detailed results of Simple Pick &
Place. CaM achieves success rates surpassing DoReMi by
20.4% when handling different kinds of objects. We show
real-world demonstrations of Simple Pick & Place and Rea-
soning Pick & Place in Sec. F.3.

Table 3. Detailed Performance of Single Pick & Place. We report the success rate and execution time. DGN is DexGraspNet 2.0 [21].

Tasks with Object Object Success Rate(%) 1 Execution Time(s) |

disturbance types Name DGN | +DoReMi +QOurs +DoReMi +Ours
Pick & Place with Toy Loopy 0.00 80.00 100.00 | 6491 +2.83 46.02+ 3.11
the objects being Deformable Toy Dog 0.00 80.00 100.00 | 60.68 +=4.00 47.06 + 3.24
moved during Toy Rabbit 0.00 90.00 90.00 | 59.83 +1.82 45.77 £ 2.03
grasping Beverage Bottle | 0.00 60.00 100.00 | 69.97 +7.89 47.61 £ 2.58
Transparent Glass Cup 0.00 70.00 90.00 | 76.99 £4.60 48.32 £ 3.22
Shampoo Bottle | 0.00 70.00 90.00 | 7091 +5.68 48.31 £ 3.08
Apple Model 0.00 80.00 100.00 | 64.65 +4.34 45.39 £ 0.71
Small Rigid Pear Model 0.00 90.00 90.00 | 67.11 £1.10 4548 +1.01
Peach Model 0.00 70.00 90.00 | 6548 £2.90 45.37 £ 0.64
Plate 0.00 80.00 100.00 | 69.86 +2.64 45.18 £ 0.65
Large Geometric Ball 0.00 90.00 100.00 | 67.43 +2.63 45.37 + 0.70
Pyramid 0.00 90.00 90.00 | 69.14 +3.32 4542 £ 0.72
Pick & Place with Toy Loopy 0.00 80.00 90.00 | 69.29 £4.87 60.86 + 3.41
the objects being Deformable Toy Dog 0.00 70.00 100.00 | 66.09 £2.99 63.12 £ 3.75
removed during Toy Rabbit 0.00 80.00 90.00 | 70.86 £4.56 63.40 + 3.88
movement Beverage Bottle | 0.00 50.00 90.00 | 77.90 £2.89 61.97+ 3.90
Transparent Glass Cup 0.00 70.00 90.00 | 70.00 £3.46 63.22 +4.35
Shampoo Bottle | 0.00 60.00 90.00 60 £+ 4.28 63.00 + 3.81
Apple Model 0.00 70.00 90.00 | 70.21 £4.30 63.71 +3.91
Small Rigid Pear Model 0.00 60.00 100.00 | 72.70 +=4.84 58.61+ 2.41
Peach Model 0.00 60.00 90.00 | 66.48 +3.32 59.19 £ 2.59
Plate 0.00 90.00 100.00 | 72.00 £2.77 59.21 + 2.61
Large Geometric Ball 0.00 70.00 100.00 | 70.92 +3.37 61.57 &+ 3.80
Pyramid 0.00 70.00 90.00 | 73.83 £2.82 60.25 £ 3.25

E. More ablation studies

Segmentation model ablations. Tab. 4 presents further
ablation studies, replacing ConSeg with LISA and Pix-
elLM. Our ConSeg shows superior overall framework per-
formance (check Tab. 4 ID A & B & E), which represents a
key technical contribution.

Failure detection mode ablations. (1) In Tab. 4 (ID C),
proactive failure detection alone yields a lower success rate
due to its inability to handle unforeseen failures; (2) In
Tab. 4 (ID D), reactive detection alone achieves a slightly
higher success rate but incurs longer execution times, as it
only responds post-failure; (3) In Tab. 4 (ID E), the synergy
of both modes achieves the best performance by addressing
the limitations of each mode.

F. More Demonstrations and Prompts

This section presents additional demonstrations, including
simulations and real-world scenarios of failure detection
and recovery, as well as constraint-aware segmentation re-
sults and prompts.

F.1. CLIPort

Here, we present demonstrations of three tasks in CLIPort:
“Stack in Order”, “Sweep Half the Blocks”, and “Use Rope

to Close the Opening Square”.

Fig. 6 demonstrates how our framework detects failures
and assists in recovery when the placement positions pre-
dicted by the policy for the “Stack in Order” task are subject
to a uniform [0, g] cm interference.

Fig. 7 illustrates how our framework performs failure de-
tection and aids in recovery when, in the “Stack in Order”
task, there is a probability p that blocks will fall due to being
released by the robot’s suction cup at each step.

Fig. 8 shows the “Sweep Half the Blocks” task, where
our framework precisely counts the blocks within a speci-
fied area and timely halts the policy execution to complete
the task. In contrast, DoReMi [5] fails to stop the policy
execution in time, leading to task failure.

Fig. 9 depicts the “Use Rope to Close the Opening
Square” task. Our framework effectively detects when the
rope closes the opening square and promptly stops the pol-
icy execution to complete the task successfully. Conversely,
DoReMi fails to halt the policy execution on time; although
it eventually succeeds in closing the opening, the excessive
execution time results in task failure.

F.2. OmniGibson

As shown in Fig. 10, Fig. 11 and Fig. 12, we show how
our framework detects failures and assists in recovery when

Table 4. Following the Omnigibson evaluation protocol, we re-
port the average success rate under disturbance (SR) and execution
time to assess the impact of ConSeg and various failure detection
modes on overall framework performance.

D Method Slot P@n Stow B(?ok Pour Tfea
SR(%) T Time(s)] | SR(%) T Time(s)] | SR(%) T Time(s)]
A LISA 30.00 126.89 42.50 118.93 24.00 218.92
B PixelLM 29.50 134.10 41.00 124.26 24.50 214.04
C | Only Proactive | 37.50 130.15 50.00 109.47 32.50 192.23
D | Only Reactive | 42.50 157.63 57.50 147.95 35.50 284.15
E Ours 47.50 101.85 65.00 93.08 40.00 174.55

facing point-, line- and surface -level disturbances.

F.3. Real-world Evaluation

Fig. 13 demonstrates the task “Clear all objects on the table
except for animals”, where our framework achieves both re-
active failure detection (e.g., detecting unexpected failures
when humans remove objects from the robot’s grasp) and
proactive failure detection (e.g., identifying target object
movement during grasping to prevent foreseeable failures).
This effectively enhances the task success rate and reduces
the execution time.

F.4. Constraint-aware segmentation

As shown in Fig. 14, Fig. 15, Fig. 16, and Fig. 17 we present
additional results on constraint-aware segmentation, includ-
ing instance and part-level results. To demonstrate gen-
eralizability, we utilize out-of-distribution (OOD) data,
including the RoboFail Dataset from REFLECT [14],
datasets from the Open6DOF benchmark [3], and the
RT-1 dataset [2]. Additionally, we showcase segmentation
results from the OmniGibson.

E.S. Prompts

As illustrated in Fig. 18, we detail the prompt used to invoke
an off-the-shelf VLM, i.e., GPT-40 [1], to generate Python
code for monitoring.

10

Stack in Order —— The placement position is perturbed by a uniform noise

Initial Observation

Step1: Pick the
green block

i
AR

Step6:Place the
green block on the
red block

Detect Failure! The
blue block is not on
the green block

Step11: Move the
blue block over the
green block

Step2: Move the
green block over
the red block

Step7: Pick the blue
block

Step12: Place the
blue block on the
green block

Step3:Place the
green block on the
red block

Detect Failure! The
blue block is not on
the green block

Detect Failure! The
green block is not
on the red block

Step8: Move the
blue block over the
green block

Step13: Pick the
blue block

Step4:Pick the
green block

Step9: Place the
blue block on the
green block

Detect Failure! The

blue block is not on

the green block

Step14: Move the
blue block over the
green block

Step5: Move the
green block over
the red block

Step10: Pick the
blue block

Stepl5: Place the
blue block on the
green block

Success!

Figure 6. Demonstration of “Stack in Order”. We show how our framework detects failures and assists in recovery when the placement
positions predicted by the policy for the “Stack in Order” task are subject to a uniform [0, g] cm interference. Red boxes indicate the
occurrence of failures, while green boxes signify successful task execution.

11

Stack in Order —— The block will be released randomly, causing it to drop

Initial Observation

&
AR

Step1: Pick the
green block

Step7: Move the
blue block over the
green block

Step2: Move the
green block over
the red block

Detect Failure! The
blue block is not
held by robot

Detect Failure! The
green block is not
held by robot

Step8: Pick the blue
block

Step3: Pick the
green block

=

Step9: Move the
blue block over the
green block

Detect Failure! The
blue block is not
held by robot

Step4: Move the

green block over the

red block

in

Step10: Pick the
blue block

Step5:Place the
green block on the
red block

Step1l: Move the
blue block over the
green block

Step6: Pick the blue
block

Step15: Place the
blue block on the
green block

Success!

Figure 7. Demonstration of “Stack in Order”. We show how our framework performs failure detection and aids in recovery when, in the
“Stack in Order” task, there is a probability p that blocks will fall due to being released by the robot’s suction cup at each step. Red boxes
indicate the occurrence of failures, while green boxes signify successful task execution.

12

Sweep Half the Blocks

Stepl Step2 Step3 Step4 Step5 Step6
Ours E ‘: q
Success!
Stepl Step2 Step3 Step4 Step5 Step6
DoReMi Fail to stop !

Step8 Step9 Steplo

4
o o

Task Failed !

Figure 8. Demonstration of “Sweep Half the Blocks” and comparison to baseline. We show our framework can precisely count the blocks
within a specified area and timely halts the policy execution to complete the task. In contrast, DoReMi [5] fails to stop the policy execution
in time, leading to task failure. Red boxes indicate the occurrence of failures, while green boxes signify successful task execution.

13

Use Rope to Close the Opening Square
Stepl Step2 Step3 Step4 Step5 Step6

Ours 5

Success!
Stepl Step2 Step3 Step4 Step5 Step6 Step7
DoReMi Fail to stop !
Step8 Step9 Stepl0 Stepll Step12 Stepl3 Stepl4

al
y</

Fail to stop ! Fail to stop ! Time limit exceeded !

y
)
.>
I$
I>

A
“

Figure 9. Demonstration of “Use Rope to Close the Opening Square” and comparison to baseline. We show that our framework effectively
detects when the rope closes the opening square and promptly stops the policy execution to complete the task successfully. Conversely,
DoReMi fails to halt the policy execution on time; although it eventually succeeds in closing the opening, the excessive execution time
results in task failure. Red boxes indicate the occurrence of failures, while green boxes signify successful task execution.

14

Slot Pen Task —— With Three Point-Level Disturbances

Proactive Failure Detect: Moved Pen has been

Initial Observation Grasp the pen The pen has moved grasped

Lift the pen to Reactive Failure Detect: Pen has been reoriented
The pen has dropped

Grasp the dropped pen

reorient it upright upright

Move the pen over pen- Proactive Failure Detect: Move pen over the moved Pen has been slotted into
holder and drop it The pen-holder has moved pen-holder pen-holder successfully

Figure 10. Demonstration of “Slot Pen”. We show how our framework detects failures and assists in recovery when facing point-level
disturbances. Red boxes indicate the occurrence of failures, light green indicates the recovery with subgoal success and dark green boxes
signify successful task execution.

15

Stow Book Task —— With Three Line-Level Disturbances

Reactive Failure Detect: Rotated Book has been
has been rotated down grasped

Initial Observation Grasp the book

Lift the book to Reorient the book Proactive Failure Detect: Leaned book has been
reorient it upright upright has been leaned reorient upright

Book has been stowed on Reactive Failure Detect: Grasp the horizontal book Book has been stowed onto
the book-shelf is rotated horizontally book-shelf successfully

Figure 11. Demonstration of “Stow Book”. We show how our framework detects failures and assists in recovery when facing line-level
disturbances. Red boxes indicate the occurrence of failures, light green indicates the recovery with subgoal success and dark green boxes
signify successful task execution.

16

Pour Tea Task —— With Three Surface-Level Disturbances

Lift the teapot with keeping Proactive Failure Detect:

Initial Observation Grasp the teapot upright to avoid spilling

Teapot has tilted backward

T o
Teapot returns to Proactive Failure Detect: Teapot returns to Teapot has aligned with cup
horizontal pose Teapot has leaned to right horizontal pose opening

Reactive Failure Detect:
Teapot is forced to horizontal

Tea has been poured
successfully

Figure 12. Demonstration of “Pour Tea”. We show how our framework detects failures and assists in recovery when facing surface-level
disturbances. Red boxes indicate the occurrence of failures, light green indicates the recovery with subgoal success and dark green boxes
signify successful task execution.

17

Reasoning Pick &Place Task: Clear all on table except for animals.

Remove the loopy from the robot hand Move the ball on the table

Spin the transparent bottl Success!

Figure 13. Demonstration of “Clear all objects on the table except for animals”. We show that our framework achieves both reactive failure
detection (e.g., detecting unexpected failures when humans remove objects from the robot’s grasp) and proactive failure detection (e.g.,
identifying target object movement during grasping to prevent foreseeable failures). This effectively enhances the task success rate and
reduces the execution time.

18

RoboFail Dataset (Out of Distribution)

Task, Subgoal, Constraint Observation ConSeg
7 Instance-level

part-level

Task: Sauté carrot slice in a saucepan.
Subgoal: Grasp the knife.
Constraint: Align the

with the of the

Task: Sauté carrot slice in a saucepan.
Subgoal: Slice carrot.

Constraint: The should be
perpendicular to the

Task: Boil water in a pot.
Subgoal: Pick up the pot.

Constraint: Align the
with the on the

Task: Boil water in a pot.

Subgoal: Place the pot on the stove.
Constraint: The pot must be 2z0cm
above the

Task: Secure pear and knife.
Subgoal: Open the drawer.
Constraint: Align the
with the of the

Task: Secure pear and knife.
Subgoal: Put pear in drawer.

Constraint: The onthe
of the

Figure 14. Visualization of constraint-aware segmentation for the RoboFail Dataset [14]. This dataset is not included in the training data.

19

Open6DOR Benchmark (Out of Distribution)
ConSeg

Task, Subgoal, Constraint Observation

Task: Take a piece of paper and lay it
over the screwdriver.

Subgoal: Grasp a piece of paper.
Constraint: Alignthe end effector
with the paper.

Task: Take a piece of paper and lay it
over the screwdriver.

Subgoal: Lay the paper over the
screwdriver.

Constraint: Move the paper 20cm
above the screwdriver.

Task: Put the ball into the upper
drawer.

Subgoal: Grasp the ball.
Constraint: Alignthe end effector
with the ball.

Task: Put the ball into the upper
| drawer.
' Subgoal: Put the ball into the upper
' drawer.
. Constraint: The distance between
| the ball and the upper drawer should
| be less than 10cm.

. Task: Place the mug on top of the

| green paper.

' Subgoal: Grasp the mug.

. Constraint: Align the end effector
with the handle of the mug.

Task: Place the mug on top of the
green paper.

Subgoal: Move the mug on top of
the green paper.

Constraint: Move the mug 20cm
above the green paper.

Figure 15. Visualization of constraint-aware segmentation for the Open6DOF [3]. This dataset is not included in the training data.

20

RT-1 Dataset (Out of Distribution)

Task, Subgoal, Constraint ~ Observation ConsSeg
! d Instance level part-level

Task: Place red bull can in middle
drawer.

Subgoal: Grasp the red bull can.
Constraint: Align the

with the

Task: Place red bull can in middle
drawer.

Subgoal: Place the red bull can into
the middle drawer.

Constraint: The must be
10cm above the

Task: Place coke can upright.
Subgoal: Grasp the coke can.

Constraint: Alignthe
with the

Task: Place coke can upright.
Subgoal: Place the can upright.
Constraint: Let the line formed by

the be
parallel to the z-axis.

Task: Move sponge to green jalapeno
chips.

Subgoal: Grasp the sponge.
Constraint: Align the

with the

Task: Move sponge to green jalapeno
chips.
Subgoal: Move sponge to green
jalapeno chips.
Constraint: Make sure the distance
between the and the

is less than 10cm.

Figure 16. Visualization of constraint-aware segmentation for the RT-1 dataset [2]. This dataset is not included in the training data.

21

Task, Subgoal, Constraint

Task: Put the pen into the pen holder.
Subgoal: Grasp the pen.
Constraint: Alignthe end effector
with the pen.

Task: Put the pen into the pen holder.

Subgoal: Grasp the pen.
Constraint: Align the end effector
with the pen.

Task: Put the pen into the pen holder.
Subgoal: Move the pen on the holder.
Constraint: Keep the pen upright.

Task: Put the pen into the pen holder. i -

Subgoal: Move the pen on the holder.
Constraint: Keep the pen upright.

Task: Pour the tea from the teapot
into the teacup.

Subgoal: Grasp the teapot.
Constraint: Alignthe end effector
with the handle of teapot.

Task: Pour the tea from the teapot
into the teacup.

Subgoal: Grasp the teapot.
Constraint: Align the end effector
with the handle of teapot.

Omnigibsom Dataset

Observation

—

ConSeg

Instance-level part-level

v v
-3 -3

Figure 17. Visualization of constraint-aware segmentation for the Omnigibsom simulator.

22

Imagine you are monitoring a robot performing manipulation tasks by writing monitor code in Python. The monitors provides you with two images
of the environment: one captured from the head camera showing a first-person perspective, and the other from a recorder camera showing a
third-person perspective. Additionally, you receive a brief text instruction describing the next subgoal of the task that the robot needs to
execute. These images are overlaid with our proposed elements, which consist of 3D points. Each element is associated with its own indices,
labeled on each point. For every given task, please follow these steps:
- For the given subgoal, specify two types of constraints to monitor: **"constraints during execution"** and **"constraints upon completion"**.
Some examples are provided below:
- Task: "Place the red block on top of the blue block":
- Subgoal: "Grasp the red block":
- Constraints upon completion: "The end-effector is aligned with the red block."
- Constraints during execution: None.
- Subgoal: "Move the red block over the blue block":
- Constraints upon completion: "The red block is positioned higher than the blue block."
- Constraints during execution: "The red block is held by the end-effector."”
- Subgoal: "Place the red block on the blue block":
- Constraints upon completion: "The red block is on the blue block."

- Constraints during execution: None.

**Note: **
- Each constraint function should take a dummy **end-effector position** and a set of **element positions** represented by 3D points, along
with their past positions, as input. It should return two outputs:

1. A **boolean value** indicating whether the spatial positions satisfy the required constraints.

2. A **textual explanation** of the constraint being checked.
- **Inputs to the constraints**:

- “end_effector™: A NumPy array of shape " (T, 3) representing the positions of the end-effector over the past “T time steps, including the
current position.

- “element_position®: A NumPy array of shape “ (T, E, K, 3)° representing the positions of "E° elements, each with “K° points, tracked over
the past "T° time steps.

- “is_finished : A boolean flag indicating whether this is a **"constraint upon completion"**.
- **Indexing**:

- Elements marked on the image correspond to indices starting from ~@°, matching the indices in the ~element_position™ array.

Allowed Libraries:

- You may only use **native Python functions** and **NumPy** functions.

Function Return:

- The **last return statement** in the function must:
- Return a **boolean value** ("True or ~False), and

- Be at the **outermost level** of the function.

Guidelines for Writing Constraints:
- Avoid contradictory or overly detailed constraints.

- Ensure the constraints are logically consistent and suitable for the specific task.

Structure your output in a single python code block as follows:
“ " python
def constraint_monitor(end_effector, element_position, is_finished):

"""put your explanation here.
return True, reason

Query

Query Task: "{task_instruction}"

Query Current Subgoal: "{next_textual_subgoal}"
Query Image:

Figure 18. Prompt of monitor code generation. We use this prompt, combined with additional task instructions, the current subgoal, and
images from two perspectives, to enable an off-the-shelf VLM, i.e., GPT-4o [1], to generate Python code for monitoring.

23

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-
mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,
Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv, 2023. 3, 5, 10, 23

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakr-
ishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al.
Rt-1: Robotics transformer for real-world control at scale.
arXiv, 2022. 10, 21

Yufei Ding, Haoran Geng, Chaoyi Xu, Xiaomeng Fang, Ji-
azhao Zhang, Songlin Wei, Qiyu Dai, Zhizheng Zhang, and
He Wang. Open6dor: Benchmarking open-instruction 6-
dof object rearrangement and a vlm-based approach. IROS,
2024. 10,20

Ankit Goyal, Valts Blukis, Jie Xu, Yijie Guo, Yu-Wei Chao,
and Dieter Fox. Rvt2: Learning precise manipulation from
few demonstrations. RSS, 2024. 8

Yanjiang Guo, Yen-Jen Wang, Lihan Zha, Zheyuan Jiang,
and Jianyu Chen. Doremi: Grounding language model by
detecting and recovering from plan-execution misalignment.
arXiv,2023. 5,6,7,8,9, 13

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson, Igor
Mordatch, Yevgen Chebotar, et al. Inner monologue: Em-
bodied reasoning through planning with language models.
arXiv,2022. 5, 6,7

Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang,
and Li Fei-Fei. Rekep: Spatio-temporal reasoning of rela-
tional keypoint constraints for robotic manipulation. arXiv,
2024. 1,4,5

Stephen James, Zicong Ma, David Rovick Arrojo, and An-
drew J. Davison. Rlbench: The robot learning benchmark &
learning environment. RAL, 2020. 3, 4

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui
Yuan, Shu Liu, and Jiaya Jia. Lisa: Reasoning segmenta-
tion via large language model. CVPR, 2024. 2

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktdschel, et al.
Retrieval-augmented generation for knowledge-intensive nlp
tasks. NeurIPS, 2020. 2

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen,
Sanjana Srivastava, Roberto Martin-Martin, Chen Wang,
Gabrael Levine, Michael Lingelbach, Jiankai Sun, Mona
Anvari, Minjune Hwang, Manasi Sharma, Arman Aydin,
Dhruva Bansal, Samuel Hunter, Kyu-Young Kim, Alan Lou,
Caleb R Matthews, Ivan Villa-Renteria, Jerry Huayang Tang,
Claire Tang, Fei Xia, Silvio Savarese, Hyowon Gweon,
Karen Liu, Jiajun Wu, and Li Fei-Fei. Behavior-1k: A
benchmark for embodied ai with 1,000 everyday activities
and realistic simulation. CoRL, 2022. 3, 4

Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu,
Jianwei Yang, Chunyuan Li, Lei Zhang, and Jianfeng Gao.
Semantic-sam: Segment and recognize anything at any gran-
ularity. arXiv, 2023. 2, 3

24

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. ICML,
2023. 5

Zeyi Liu, Arpit Bahety, and Shuran Song. Reflect: Summa-
rizing robot experiences for failure explanation and correc-
tion. CoRL, 2023. 10, 19

Pasquale Minervini et al. awesome-hallucination-detection.
https://github.com/EdinburghNLP/awesome-—
hallucination—detection, 2024. 2

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al.
Dinov2: Learning robust visual features without supervision.
arXiv, 2023. 4

Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kun-
chang Li, He Cao, Jiayu Chen, Xinyu Huang, Yukang Chen,
Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang,
Hongyang Li, Qing Jiang, and Lei Zhang. Grounded sam:
Assembling open-world models for diverse visual tasks.
arXiv,2024. 2,3

Kenneth Shaw, Ananye Agarwal, and Deepak Pathak. Leap
hand: Low-cost, efficient, and anthropomorphic hand for
robot learning. arXiv, 2023. 4

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport:
What and where pathways for robotic manipulation. CoRL,
2021. 3,4,5

Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan
Vuong, Chongyi Zheng, Philippe Hansen-Estruch, An-
dre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al.
Bridgedata v2: A dataset for robot learning at scale. CoRL,
2023. 2

Jialiang Zhang, Haoran Liu, Danshi Li, XinQiang Yu, Hao-
ran Geng, Yufei Ding, Jiayi Chen, and He Wang. Dexgrasp-
net 2.0: Learning generative dexterous grasping in large-
scale synthetic cluttered scenes. CoRL, 2024. 5, 9

Xinyu Zhang, Yuhan Liu, Haonan Chang, Liam Schramm,
and Abdeslam Boularias. Autoregressive action sequence
learning for robotic manipulation. arXiv, 2024. 4, 8

https://github.com/EdinburghNLP/awesome-hallucination-detection
https://github.com/EdinburghNLP/awesome-hallucination-detection

	. More discussions
	. Methodology discussions
	. Technical detail discussions
	. Limitations and Future Work

	. Constraint Painter
	. ConSeg Data Collection
	. ConSeg Training Details
	. Element Pipeline Details

	. Environment Configuration
	. Environmental Setup
	. Control Policy
	. Baseline Details

	. Evaluation Details
	. CLIPort
	Task, Disturbance and Metric Details
	Detailed Experiment Results

	. OmniGibson
	Task, Disturbance and Metric Details
	Detailed Experiment Results

	. RLBench
	Task, Disturbance and Metric Details
	Detailed Experiment Results

	. Real-world Evaluation
	Task, Disturbance and Metric Details
	Detailed Experiment Results

	. More ablation studies
	. More Demonstrations and Prompts
	. CLIPort
	. OmniGibson
	. Real-world Evaluation
	. Constraint-aware segmentation
	. Prompts

