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6. Method
6.1. Preliminaries of Diffusion Models

Diffusion Models are consisted of two processes: the for-

ward process and the reverse process. The forward pro-

cess progressively perturbs x0 to a latent variable by adding

noise sampling from isotropic Gaussian distribution. Math-

ematically, a T -step forward process can be formulated as

the following Markovian chain:

q(x1, ..., xT |x0) =
T∏

t=1

q(xt|xt−1), (16)

where q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) is a normal

distribution whose mean value is
√
1− βtxt−1 and the de-

viation is βtI. Here, βt is the variance schedule across diffu-

sion steps. The latent variable xT ∼ N (0, I) when T→∞.

The reverse process can be viewed as a corresponding

denoise process to recover x0 from the latent variable xT ,

which can be parameterized as:

pθ(x0, ..., xT−1|xT ) =

T∏
t=1

pθ(xt−1|xt), (17)

where pθ(xt−1|xt) is represented as the ap-

proximate Gaussian such that pθ(xt−1|xt) =
N (xt−1;μθ(xt, t),Σθ(xt, t)), μθ(xt, t) and Σθ(xt, t))
are the mean and variance which can be estimated by θ.

In practice, the variance is set to untrained time dependent

constants i.e., Σθ(xt, t) = βtI.
The objective of the Diffusion Model is to maximize the

Evidence Lower Bound (ELBO) of the joint distribution of

forward process, which can be simplified as:

Ex0,t,ε||ε− εθ(xt, t)||22, (18)

where ε ∼ N (0, I) is the Gaussian noise added in xt and θ
represents the parameter of a neural network.

Conditional Diffusion Models (CDMs) aim to imple-

ment controllable diffusion with condition y for jointly

training, and the objective can be modified as:

Ex0,y,t,ε||ε− εθ(xt, y, t)||22. (19)

For the image-to-image translation task, the condition y is

the image in the source domain.

Latent Diffusion Models (LDMs) [29] operate the for-

ward and reverse processes in a latent space rather than the

original pixel space which help focus on the important se-

mantic information of the data while mitigating the need for

redundant and intensive computations.

6.2. Computational Complexity

Here, we focus on analyzing the computational complex-

ity of the MMFM and UAFM modules. MMFM is con-

sisted of two parts i.e., spatial attention and channel atten-

tion. The computational complexity for the spatial atten-

tion with the input feature v ∈ RC×H×W in Eq. (6) is

2O(C2 × K2 × H × W ) + 4O(C × H × W ), where the

computational complexity for each convolution, normaliza-

tion and activation operations are O(C2 ×K2 ×H ×W ),
O(C ×H ×W ) and O(C ×H ×W ), respectively. Simi-

larly, the computational complexity of the channel attention

with the concatenated input fsp ∈ R2C×H×W in Eq. (7)

is O(2C × H × W ) + O( 2Cr × 2C) + O(2C × 2C
r ),

where the complexity of AvgPool and linear operations are

O(2C×H×W ) and O( 2Cr ×2C)+O(2C× 2C
r ), respec-

tively. In summary, the total computational complex-
ity of the MMFM module is 2O(C2 ×K2 ×H ×W ) +
4O(C ×H ×W ) + O(2C ×H ×W ) + O( 2Cr × 2C) +

O(2C × 2C
r ). On the other hand, UAFM mainly involves

the calculation of uncertainty-aware cross-attention (shown

in Eq. (9)). Thus, the total complexity for UAFM module
is 2O(H2 ×W 2 × d) +O(H2 ×W 2).

7. Additional Experiments

7.1. Additional Results of Uni-modal Methods

We present additional results for each individual modality

(i.e., nuclei and vessels) of uni-modal methods in Tab. 8. We

can observe that our method consistently outperforms the

uni-modal methods for both nuclei and vessels. The results

also support the finding that vessels are more beneficial for

predicting NPs.

7.2. Settings of Hyperparameters.

We conduct studies about the hyperparameters of λ in

Eq. (13) and α in Eq. (14) on the internal validation, with

results in Fig. 6 and Fig. 7. Based on outcomes across dif-

ferent datasets, we find that λ achieves optimal performance

at 1e-4, while setting α to 0.1 is more beneficial for the re-

sults.

7.3. Different Types of Datasets and Tasks

Dataset. We further validate the effectiveness of DAMM-

Diffusion on the brain image synthesis task. Specifically,

we test our DAMM-Diffusion on the Multi-modal Brain Tu-

mor Segmentation Challenge 2018 (BRATS) dataset [27].



Table 8. Performance comparisons with uni-modal methods on internal validation set. The symbol * indicates significant improvement

(p < 0.05).

Methods SSIM % (nuclei) SSIM % (vessels) PSNR (nuclei) PSNR (vessels)

Cyclegan 74.87±3.64 ∗ 84.07±2.67 ∗ 28.12±2.46 ∗ 36.96±2.34 ∗

Pix2pix 76.02±3.24 ∗ 87.81±2.15 ∗ 31.27±2.12 ∗ 38.97±2.70 ∗

LDM 78.23±1.02 ∗ 92.97±0.65 ∗ 32.57±1.17 ∗ 43.72±0.62 ∗

BBDM 79.05±1.31 ∗ 93.01±0.81 ∗ 32.34±0.96 ∗ 43.96±0.75 ∗

Ours 96.54±0.62 47.93±0.67

Figure 6. The effect of hyperparameter λ.

Figure 7. The effect of hyperparameter α.

The BRATS dataset consists of 285 patients with the multi-

modal MRI scans including different imaging modalities:

T1, T2 and FLAIR. These scans were acquired using vari-

ous clinical protocols and scanners from 19 different institu-

tions, ensuring a diverse and comprehensive dataset. Each

modality volume has a size of 240 × 240 × 155 voxels.

In this study, we automatically select 2D axial-plane slices,

crop a central 200 × 200 region from each and then resize

it to 256 × 256. Additionally, we randomly split the 285

subjects to 80% for training and 20% for testing.

Results of Different Modalities on Uni-modal Branch.
We compare the performance of DAMM-Diffusion when

using different input modalities in the uni-modal branch on

the BRATS dataset. As shown in Tab. 9, the results indicate

that the choice of different input images do not significantly

impact the final performance on the BRATS dataset. This

may be due to the fact that each modality in the multi-modal

brain image synthesis effectively contributes to the overall

outcomes.

Task T1, T2 → FLAIR T1, FLAIR → T2 T2, FLAIR → T1

Input T1 T2 T1 FLAIR T2 FLAIR

SSIM
88.90 89.20 92.37 92.86 92.68 92.27

±6.25 ±5.65 ±3.66 ±3.60 ±4.22 ±4.42

PSNR
24.13 24.23 25.07 25.25 25.61 25.29

±3.38 ±3.16 ±3.74 ±3.48 ±2.49 ±2.60

Table 9. Effects of choosing different types of images in the uni-

modal branch on the BRATS Dataset.

Qualitative Results. We present the representative tar-

get images for T1, T2 → FLAIR , T2, FLAIR → T1 and

T1, FLAIR → T2 in Fig. 8, Fig. 9 and Fig. 10, respec-

tively. Compared to the baseline methods, our approach

generates target images with significantly reduced artifacts

and enhanced clarity in tissue depiction. As shown in Fig. 8,

DAMM-Diffusion can accurately capture brain lesions and

provide the details of pathological regions, while the other

methods fail to achieve. These results demonstrate the supe-

riority of DAMM-Diffusion in generating the reliable med-

ical images.

7.4. Additional Visualization Analysis

We provide more visualization results on the NPs distri-

bution prediction task, including the generated whole-slide

and patch-level images in Fig. 11 and Fig. 12, respectively.
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Figure 8. Visualization results of benchmark methods and DAMM-Diffusion on the BRATS dataset for the representative many-to-one

synthesis task: T1, T2 → FLAIR.
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Figure 9. Visualization results of benchmark methods and DAMM-Diffusion on the BRATS dataset for the representative many-to-one

synthesis task: T2, FLAIR → T1.
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Figure 10. Visualization results of benchmark methods and DAMM-Diffusion on the BRATS dataset for the representative many-to-one

synthesis task: T1, FLAIR → T2.
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Figure 11. Qualitative comparison between the proposed method and the previous methods for NPs distribution prediction in a whole-slide

image.
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Figure 12. Visualization of generated NPs distribution (1st and 3th rows) and corresponding difference maps (2nd and 4th rows) at patch

level.


