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Supplementary Material

This appendix provides supplementary materials that could
not be included in the main paper due to space limitations.
In Sec. A, we present the reformulation of the loss func-
tion Eq. (5). Sec. B provides details on the implementation,
baselines, and evaluation metrics. Sec. C provides addi-
tional performance comparisons of various methods across
different datasets and models. Finally, Sec. D demonstrates
the implementation details, quantitative results, and quali-
tative results of applying our method to downstream tasks,
including face recognition, backdoor defense, and semantic
segmentation.

A. Reformulation
In this section, we reformulate the loss function Eq. (5) in
the main paper. We prove that, with an appropriately de-
signed mask Mask′u(·), the masking and softmax steps can
be interchanged. After reordering, the resulting softmax
vector satisfies the condition that the sum of its elements
equals 1, thereby obviating the need for additional normal-
ization.

We define the mask function as Mask′u(v) = v + mu,
where the vector mu ∈ RK is defined as:

mu
i =

{
0 if i ̸= u,

−∞ if i = u.

Next, we prove that interchanging the mask and softmax
steps with an appropriately designed mask function results
in proportional outcomes, i.e.,

Masku(Softmax(z)) ∝ Softmax(Mask′u(z))

This is beacuse, for i ̸= u, we have:

Masku(Softmax(z))i =
ezi∑
i e

zi

=
ezi∑
i̸=u e

zi
×

∑
i ̸=u e

zi∑
i e

zi
.

Meanwhile,

Softmax(Mask′u(z))i =
ezi

e−∞ +
∑

i ̸=u e
zi

=
ezi∑
i ̸=u e

zi
.

For i = u, both element yield 0:

Masku(Softmax(z))i = Softmax(Mask′u(z))i = 0

Table S1. Optimization settings for image classification.

Config Value
Optimizer SGD
Weight Decay 5e-4
Momentum 0.9
Learning Rate Scheduler Step LR Scheduler
Learning Rate Step 40
Learning Rate Gamma 0.1

Thus, for any i, combining the two cases above, we obtain
the following relationship:

Masku(Softmax(z))i = Softmax(Mask′u(z))i×
∑

i ̸=u e
zi∑

i e
zi

.

Since the elements of both vectors are proportional by
a factor, normalizing these vectors results in identical out-
puts. Given that the softmax operation ensures the output
vector is already normalized (i.e., its elements sum is 1), we
conclude:

Normalize(Masku(Softmax(z))) = Softmax(Mask′u(z)).
(S1)

Thus, we can interchange the mask and softmax steps
via Eq. (S1), thereby simplifying Eq. (5) in the main pa-
per by removing the need for normalization. The final loss
function is expressed as:

L = KL (Normalize(Masku(Softmax(z))) ∥q)
= KL

(
Softmax(Mask′u(z))

∥∥q) .
B. Experimental Details
B.1. Implementation Details
Our implementation is based on Python 3.8 and PyTorch
1.13. All experiments are conducted on a system equipped
with NVIDIA RTX 4090 GPU and Intel Xeon Gold 6226R
CPU. For the image classification unlearning task, we first
train the original model from scratch. The optimizer set-
tings are detailed in Tab. S1. The training configurations
for different models and datasets during pretraining are pro-
vided in Tab. S2. The retrain model follows the same train-
ing configurations but is trained exclusively on Dr, without
access to Df.

B.2. Baseline Details
Recalling that we compare the unlearning performance of
different methods, under the two imposed constraints: (i)



Table S2. Pre-training setups for different datasets and models.

Different Datasets CIFAR-10 CIFAR-100 Tiny ImageNet
ResNet-18 ResNet-18 ResNet-18

Pretrain Epochs 150 150 150
Pretrain LR 0.1 0.1 0.1
Batch Size 128 128 64

Different Models VGG-16 Swin-T ViT-S
CIFAR-10 CIFAR-10 CIFAR-10

Pretrain Epochs 80 100 150
Pretrain LR 0.01 0.01 0.1
Batch Size 128 64 128

No access to the remaining data; (ii) No intervention dur-
ing the pre-training phase. Under these constraints, cer-
tain methods become infeasible. Finetune, Fisher For-
get [8], SSD [7], and SISA [1] fail to work due to their re-
liance on remaining data or intervention in their algorithms.
Bad Teacher [4], Saliency Unlearn[6], SCRUB [10], and
UNSIR[16] are unable to compute regularization loss or
perform additional repair phases.

Nevertheless, to better compare the performance of dif-
ferent methods, we select several well-known approaches
and evaluate them under scenarios without the aforemen-
tioned constraints. The selected methods include Finetune,
Fisher Forget, Bad Teacher, and Saliency Unlearn, with
their results marked in gray in the main paper. Specifically,
for Bad Teacher and Saliency Unlearn, we also remove the
regularization loss that depend on remaining data and test
their performance under the imposed constraints. These re-
sults are marked in black.

For training-based unlearning methods, we perform un-
learning for 20 epochs and search for the optimal learn-
ing rate within the range of [10−7, 10−2]. For parameter-
scrubbing unlearning methods, we search for the hyperpa-
rameter α in the range of [10−8, 10−5] for Fisher Forget,
and in the range of [10−2, 102] for Influential Unlearn. All
other hyperparameter settings follow the configurations in
the responding original papers.

B.3. Mertic Details
Following prior work, we use membership inference at-
tacks (MIA) success rate as a metric to evaluate the for-
getting performance of the unlearn model [6]. The MIA
implementation is based on a prediction confidence-based
attack method [15]. To construct the dataset for training the
MIA predictor, we sample a balanced binary classification
dataset from Dr and Drt. The input consists of the confi-
dence scores predicted by the model for the images, while
the corresponding labels indicate whether each image orig-
inates from Dr or Drt.

During the evaluation phase, the confidence scores pre-
dicted by fθ on Df are used as input to the MIA predictor.
The classification results of the MIA predictor are then used

Table S3. Performance comparison of single-class forgetting
across different unlearning methods on Tiny ImageNet dataset.
bold indicates the single best result among methods. The same
notation applies hereafter.

Method Accf ↓ Accr ↑ Accft ↓ Accrt ↑ H-Mean ↑ MIA ↓
Original Model 100 99.98 66.0 64.15 - 99.4
Retrain Model 0 99.98 0 64.42 65.20 0

Random Label 3.2 97.58 2.0 58.84 61.31 0.2
Negative Gradient 7.8 95.36 2.0 56.24 59.87 3.0
Boundary Shrink 5.2 97.49 2.0 57.85 60.77 0.6
Boundary Expand 8.6 98.89 2.0 58.88 61.33 0
Influence Unlearn 12.2 99.36 2 60.30 62.09 1.6
Learn to Unlearn 1.0 85.57 0 50.73 57.37 0.2

Bad Teacher 5.8 98.32 2.0 59.02 61.41 0.2
Saliency Unlearn 6.6 98.80 2.0 59.67 61.76 0.6

Ours 0.4 99.94 0 62.15 64.02 0

to assess how many samples in the forgetting dataset are still
memorized by the model after unlearning. The MIA metric
is defined as:

MIA =
TP
|Df|

where it measures the proportion of samples in Df that the
MIA predictor classifies as still being memorized by the
model. In other words, it represents the proportion of sam-
ples in Df that were not successfully forgotten.

Note that our MIA evaluation is slightly different from
Saliency Unlearn’s [6]. We measure the proportion of
samples in Df that have not been successfully forgotten,
whereas Saliency Unlearn measures the proportion of suc-
cessfully forgotten samples. We adopt this approach to
maintain consistency with metrics such as Accf and Accft,
where lower values indicate better forgetting performance.

C. Experimental Results
C.1. Performance on Different Datasets
In the main paper, we present the results of single-class
forgetting on CIFAR-10 and CIFAR-100. Tab. S3 further
presents the performance on Tiny ImageNet across various
methods for the single-class forgetting task. While most
methods achieve some degree of forgetting, several exhibit
poor retention of knowledge for the remaining classes. For
example, Negative Gradient, Boundary Shrink, Boundary
Expand, and Learn to Unlearn show a decline of around 5%
in Accrt compared to the original model.

Notably, despite Learn to Unlearn performing well on
CIFAR-10 and CIFAR-100, its performance drops signif-
icantly on Tiny ImageNet, falling from third place on
CIFAR-10 to the lowest rank on Tiny ImageNet. This high-
lights its fragility and inconsistency across datasets.

In contrast, our method consistently demonstrates strong
performance, achieving complete forgetting in Accft while
maintaining excellent Accrt. Among all methods, ours is
one of only two to surpass 60% in Accrt, outperforming



Table S4. Performance comparison of single-class forgetting on
VGG-16, across different unlearning methods on CIFAR-10.

Method Accf ↓ Accr ↑ Accft ↓ Accrt ↑ H-Mean ↑ MIA ↓
Original Model 99.94 99.94 91.20 92.02 - 99.88
Retrain Model 0 99.71 0 92.49 91.84 0

Random Label 0 96.35 0 88.16 89.65 0
Negative Gradient 0.36 92.11 0.20 83.77 87.24 0.20
Boundary Shrink 6.68 91.15 6.80 82.79 83.59 2.84
Boundary Expand 2.82 84.95 2.10 77.27 82.76 1.38
Influence Unlearn 1.86 93.17 1.60 84.74 87.10 1.30
Learn to Unlearn 3.28 94.10 3.00 85.56 86.86 1.96

Bad Teacher 7.14 90.95 7.20 82.90 83.45 0
Saliency Unlearn 11.24 73.37 10.90 69.09 74.27 0

Ours 0 99.66 0 92.08 91.64 0

Table S5. Performance comparison of single-class forgetting on
Swin-T, across different unlearning methods on CIFAR-10.

Method Accf ↓ Accr ↑ Accft ↓ Accrt ↑ H-Mean ↑ MIA ↓
Original Model 85.00 86.58 82.70 82.68 - 82.94
Retrain Model 0 86.41 0 82.77 82.73 0

Random Label 3.68 74.86 0.90 70.42 75.68 4.68
Negative Gradient 0.46 74.60 0.10 71.98 76.93 0.22
Boundary Shrink 5.54 62.94 2.50 58.18 67.44 11.36
Boundary Expand 2.58 70.36 1.00 65.67 72.81 3.26
Influence Unlearn 0.04 76.02 0 72.99 77.54 0
Learn to Unlearn 0.52 79.55 0.40 76.50 79.29 0.14

Bad Teacher 8.96 74.77 6.30 68.86 72.43 7.24
Saliency Unlearn 11.16 76.88 8.00 72.40 73.53 12.40

Ours 0 86.68 0 83.61 83.15 0

Table S6. Performance comparison of single-class forgetting on
ViT-S, across different unlearning methods on CIFAR-10.

Method Accf ↓ Accr ↑ Accft ↓ Accrt ↑ H-Mean ↑ MIA ↓
Original Model 90.50 90.57 72.70 75.73 - 84.60
Retrain Model 0 92.42 0 76.44 74.52 0

Random Label 1.32 77.38 1.80 68.51 69.68 2.24
Negative Gradient 0.38 85.25 0.50 73.34 72.77 0.34
Boundary Shrink 1.84 73.16 1.70 65.59 68.19 1.66
Boundary Expand 8.02 75.86 7.80 67.42 66.14 9.24
Influence Unlearn 0.98 87.09 0.90 75.20 73.46 0.78
Learn to Unlearn 0.46 85.11 0.30 73.20 72.80 0.36

Bad Teacher 6.02 74.66 5.40 67.27 67.28 7.32
Saliency Unlearn 6.22 77.54 5.90 68.46 67.62 7.14

Ours 0 90.74 0 77.21 74.89 0

the second-best method by nearly 2%. Our method outper-
forms all other approaches across all performance metrics
on Tiny ImageNet. This demonstrates the superior balance
of our approach between effective forgetting and retention
of unrelated knowledge across various datasets.

C.2. Performance on Different Models
This part compares the performance of various methods
across different models. In Tabs. S4 to S6, we present the
forgetting performance of different methods on three dis-
tinct models, apart from ResNet-18 discussed in the main
paper: VGG-16, Swin-T, and ViT-S.

Remarkably, our method achieves the best results across

all 18 metrics on all three models. Among these, it achieves
the sole best performance on 14 metrics. For the overall
performance metric H-Mean, our method outperforms the
second-best by margins of 1.99%, 3.86%, and 1.43% on
VGG-16, Swin-T, and ViT-S, respectively. Additionally,
on Accrt, which measures the preservation of knowledge
for unrelated classes, our method leads by 3.92%, 7.11%,
and 1.99% over the second-best on the respective models.
These results highlight the strong generalization and con-
sistent performance of our method across different archi-
tectures.

In contrast, some other methods exhibit significant per-
formance fluctuations, reflecting their fragility when ap-
plied to different models. For example, Boundary Shrink
shows a gap of 7.74% in H-Mean compared to the retrain
model on ResNet-18, which expands to 15.29% on Swin-T,
nearly doubling the performance gap. On the other hand, In-
fluence Unlearn demonstrates relatively stable performance,
achieving three second-place and one third-place rankings.
However, its H-Mean scores are 1.22% to 5.61% lower than
those of our method across all models, further emphasizing
our superior performance.

D. Application to Downstream Tasks

D.1. Face Recognition with Unlearning
Implementation Details. Face recognition experiments
are conducted using the VGGFace2 [2] dataset and the
ResNet18 model. To prepare the dataset, we first filter in-
dividuals with more than 500 images, and randomly select
110 of them. For each individual, we allocate 400 images
for the training set and 100 images for the test set.

The model is pretrained using 100 randomly selected in-
dividuals from the training set for 80 epochs to obtain a pre-
trained model. Subsequently, we fine-tune the model for
40 epochs using 10 other individuals. During the unlearn-
ing phase, one of these 10 individuals is randomly chosen,
and the unlearning process is performed for 20 epochs. To
ensure fairness, all methods are evaluated using the same
individuals for the pretraining, fine-tuning, and unlearning
stages. The batch size is set to 64 for all training stages, and
the learning rate is fixed at 0.01 during both the pretraining
and fine-tuning phases.
Qualitative Results. Tab. S7 presents the performance of
various methods on the face recognition task. Our method
achieves the best results across all metrics. In terms of over-
all performance, measured by H-Mean, our method demon-
strates a minimal gap of just 0.61% compared to the retrain
model, which is considered as the upper bound.

D.2. Backdoor Defense with Unlearning
Implementation Details. Data poisoning is a common
backdoor attack method, where a small fraction of the train-



Table S7. Performance comparison of face recognition task on
VGG-Face dataset.

Method Accf ↓ Accr ↑ Accft ↓ Accrt ↑ H-Mean ↑ MIA ↓
Original Model 100 100 97.00 99.22 - 100
Retrain Model 0 100 0 98.89 97.94 0

Random Label 0 99.97 0 97.22 97.11 0
Negative Gradient 1.15 98.25 1.00 93.67 94.82 1.00
Boundary Shrink 0 100 0 97.33 97.16 0
Boundary Expand 4.25 99.94 3.00 97.33 95.64 0
Influence Unlearn 0 99.97 0 96.11 96.55 0
Learn to Unlearn 2.25 96.94 1.00 92.33 94.13 1.25

Bad Teacher 2.75 98.50 3.00 95.56 94.77 0
Saliency Unlearn 18.50 100 11.00 97.67 91.46 3.50

Ours 0 100 0 97.67 97.33 0

ing data is maliciously altered with triggers and incorrect
labels. Once trained on such poisoned data, the backdoored
model behaves normally on clean inputs but misclassifies
those containing the embedded trigger.

To defend against such attacks, unlearning methods aim
to effectively remove the influence of poisoned data from
the model. Following the setup [13], we adopt BadNets [9]
as the backdoor attack scenario in our experiments. Specifi-
cally, we conduct experiments on the CIFAR-10 dataset us-
ing a ResNet18 model. In this setup, 5% of the training
data is poisoned by embedding triggers of specified sizes
at random locations within the images. This experiment
allows us to evaluate the ability of unlearning methods to
eliminate the backdoor effect while preserving the model’s
performance on clean data.

In data poisoning scenarios, the trigger is often inac-
cessible. Consequently, our backdoor defense approach is
divided into two phases: recovering the trigger and un-
learning it. We adopt the recovery algorithm from the
BAERASER [13] and replace the negative gradient method
with our approach in the unlearning phase.

To evaluate the effectiveness of backdoor defense meth-
ods, we utilize two metrics: ASR and Acc. Here, ASR (At-
tack Success Rate) measures the success rate on the poi-
soned data, while Acc indicates the classification accuracy
on clean samples. An effective defense algorithm should
minimize ASR while maintaining a high Acc.
Qualitative and Quantitative Results. As shown in
Tab. S8, our method achieves improved Quantitative results.
Across various trigger sizes, our method shows perfor-
mance gains ranging from 3.00% to 6.96% on all metrics.
Notably, for small 3×3 trigger sizes, we observe improve-
ments of 6.96% and 4.19% compared to the recovery+NG
method. Meanwhile, some other methods face challenges
of insufficient defense and reduced model performance. For
example, NAD causes Acc to drop significantly to 69% with
a 3×3 trigger, while fine pruning yields unsatisfactory de-
fense effectiveness, with an ASR of 32.07%.

We further present the attention visualizations of the

Table S8. Attack success rate and accuracy across different trigger
sizes and defense methods on CIFAR-10.

Method 3×3 5×5 7×7

ASR ↓ Acc ↑ ASR ↓ Acc ↑ ASR ↓ Acc ↑
Original Model 98.80 83.81 97.99 83.64 98.01 82.89

Fine Pruning [12] 32.07 77.96 37.41 78.34 35.24 76.29
NAD [11] 4.24 69.00 7.68 69.25 8.95 70.49

Finetune [14] 9.52 78.95 9.32 78.51 10.77 78.32
Recovery + NG 7.96 79.31 5.64 79.59 4.66 79.19

Recovery + Ours 1.00 83.50 1.24 83.07 1.66 82.23

Original Ours OursOriginal

Figure S1. Visualization of attention heatmaps generated by the
original backdoored model (Original) and the model repaired us-
ing our method (Ours). The red boxes highlight the backdoor
triggers in the original images. The original backdoored model fo-
cuses primarily on the trigger regions, while our method success-
fully shifts attention to classification-relevant areas, demonstrating
effective backdoor defense.

backdoored model and the model repaired using our
method. As shown in the Fig. S1, our method effectively
erases the influence of poisoned data, enabling the repaired
model to shift its focus away from the trigger and towards
classification-relevant regions.

D.3. Semantic Segmentation with Unlearning
Implementation Details. In this part, we explore the appli-
cation of machine unlearning in the downstream task of se-
mantic segmentation. Semantic segmentation aims to clas-
sify every pixel in an image, thereby generating a segmen-
tation map. We use the DeepLab v3+ model [3] and the
PASCAL VOC dataset [5] to conduct segmentation experi-
ments.

Similar to unlearning in classification, we first train a
segmentation model from scratch, and then unlearn an en-
tire class from it. During the pretraining phase, we employ
SGD optimization with a learning rate of 0.007, weight de-
cay of 5e-4, and train for 50 epochs. Then we perform un-
learning over 10 epochs.

To evaluate the methods’ unlearning and remaining per-
formance, we measure the Intersection over Union (IoU)



Table S9. Performance comparison of different unlearning meth-
ods on the semantic segmentation task.

Metric Retrain Model Negative Gradient Random Label Ours

IoUft ↓ 0 10.26 22.26 0
IoUrt ↑ 71.55 42.26 45.06 68.93

Original Ours Original Ours

Figure S2. Visualization of machine unlearning in the semantic
segmentation task, including segmentation results generated by
the original model (Original) and the unlearned model with our
method (Ours).

on the test set. The IoU quantifies the overlap between the
model’s predicted segmentation map and the ground truth; a
higher IoU indicates better segmentation performance. We
compute the IoU for the forgotten class, denoted as IoUft,
and the average IoU for the remaining classes, denoted as
IoUrt. In machine unlearning, a lower IoUft indicates more
effective unlearning, while a higher IoUrt suggests that the
knowledge on remaining classes is less affected.
Qualitative and Quantitative Results. In terms of quanti-
tative results, as shown in Tab. S9, our method achieves 0%
IoU for the forgotten class and 68.93% IoU for the remain-
ing classes, delivering performance closest to that of the re-
train model. Other methods, while failing to effectively un-
learn, exhibit a significant performance drop of over 25% in
IoUrt, indicating their inability to achieve effective unlearn-
ing or sufficient preservation of the remaining knowledge.

We further present the visualization of segmented re-
sults before and after unlearning in Fig. S2. The left three
columns show segmentation results for images containing
only the car class. While the original model correctly iden-
tifies and outlines the car, the unlearned model has “forgot-
ten” and no longer detects it. The right three columns depict
images with car and other objects, demonstrating that the
target class is successfully forgotten, and the segmentation
of people remains preserved.

References
[1] Lucas Bourtoule, Varun Chandrasekaran, Christopher A

Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang,

David Lie, and Nicolas Papernot. Machine unlearning. In
S&P, 2021. 2

[2] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and An-
drew Zisserman. Vggface2: A dataset for recognising faces
across pose and age. In FG, 2018. 3

[3] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, 2018. 4

[4] Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and
Mohan Kankanhalli. Can bad teaching induce forgetting?
unlearning in deep networks using an incompetent teacher.
In AAAI, 2023. 2

[5] Mark Everingham, Luc Van Gool, Christopher K. I.
Williams, John M. Winn, and Andrew Zisserman. The pascal
visual object classes (VOC) challenge. IJCV, 2010. 4

[6] Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Den-
nis Wei, and Sijia Liu. Salun: Empowering machine unlearn-
ing via gradient-based weight saliency in both image classi-
fication and generation. arXiv preprint arXiv:2310.12508,
2023. 2

[7] Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast
machine unlearning without retraining through selective
synaptic dampening. In AAAI, 2024. 2

[8] Aditya Golatkar, Alessandro Achille, and Stefano Soatto.
Eternal sunshine of the spotless net: Selective forgetting in
deep networks. In CVPR, 2020. 2

[9] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying vulnerabilities in the machine learning
model supply chain. CoRR, 2017. 4

[10] Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and
Eleni Triantafillou. Towards unbounded machine unlearning.
In NeurIPS, 2024. 2

[11] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,
and Xingjun Ma. Neural attention distillation: Erasing back-
door triggers from deep neural networks. In ICLR, 2021. 4

[12] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-
pruning: Defending against backdooring attacks on deep
neural networks. In RAID, 2018. 4

[13] Yang Liu, Mingyuan Fan, Cen Chen, Ximeng Liu, Zhuo Ma,
Li Wang, and Jianfeng Ma. Backdoor defense with machine
unlearning. In INFOCOM, 2022. 4

[14] Ximing Qiao, Yukun Yang, and Hai Li. Defending neural
backdoors via generative distribution modeling. In NeurIPS,
2019. 4

[15] Liwei Song and Prateek Mittal. Systematic evaluation of pri-
vacy risks of machine learning models. In USENIX, 2021. 2

[16] Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and
Mohan Kankanhalli. Fast yet effective machine unlearning.
TNNLS, 2023. 2


