
Design2GarmentCode:
Turning Design Concepts to Tangible Garments Through Program Synthesis

Supplementary Material

7. Validations in Design2GarmentCode
7.1. Rule-based Validation

Rule-based validation primarily addresses issues of com-
pleteness and hallucination during the MMUA’s generation
process. With prompts generated by the DSL-GA contain-
ing over 100 questions, the MMUA often struggles to pro-
vide comprehensive answers in a single attempt. Addition-
ally, due to the inherent hallucination tendencies of LLMs,
some responses may fall outside the reasonable parame-
ter range defined by GarmentCode. To mitigate these is-
sues, we compare the MMUA’s responses against a prede-
fined complete question space to verify whether all ques-
tions have been adequately addressed before program syn-
thesis. Each response is further validated to ensure it falls
within GarmentCode’s permissible parameter space. Ques-
tions with either missing or invalid answers are sent back
to the MMUA for re-evaluation, with a maximum of two
validation loops to refine the outputs.

7.2. MMUA Design Comparison

During design comparison we ask the MMUA to compare
the output design image versus the design input and propose
modification suggestions to DSL-GA to edit the generated
pattern. Design comparison is especially useful for image-
guided generation, where the output design image is ren-
dered from the draped garment mesh under a similar view-
point to the input image, we use TokenHMR [15] to esti-
mate the camera pose and rough human pose from the input
design image. The prompt used for design comparison is
given in Figure 10.

8. Implementation Details
We use GPT-4V [6] for MMUA, and an instruction tuned
version of Llama-3.2-3B for DSL-GA (Γ). The following
sections contains the detailed explanation for the finetuned
DSL-GA (Supp. 8.1), and training details for the Projector
Ψ (Supp. 8.2).

8.1. Finetuning DSL-GA Γft

To optimize the trade-off between computational cost and
generation quality, we use Llama-3.2-3B-Instruct[52] as the
base model for DSL-GA, fine-tuned over two epochs with
LoRA (rank 16) and a learning rate of 5 × 10−4 on a
dataset with 583 hierarchically defined NL-DSL pairs from
GarmentCode’s public code repository. All code genera-
tion experiments were conducted on a single NVIDIA GTX

Figure 10. Prompt for MMUA during design comparison.

4090. For multi-modal understanding tasks, GPT-4V was
employed as the designated agent.

8.2. Training The Projector Ψ

The projector Ψ is trained on the GarmentCodeData [32]
dataset, which comprises approximately 115,000 garment
samples draped on a standard A-pose body. We generate
initial design descriptions for each sample using GPT-4V
or rule-based inverse mapping from the ground truth design
parameters for the sample, for example

if design.shirt.length.v > 1.0:
return 'shirt__length__long'

The token sequence length is fixed at 122, which is equal
to the number of design parameters in GarmentCode. The
projection MLP and Transformer decoder are designed with
feature dimensions of 128. The MLP consists of 4 interme-
diate layers, while the Transformer decoder includes 8 lay-
ers. Training is conducted using the Adam optimizer with a
learning rate of 5× 10−4, a batch size of 16, and completed
on a single NVIDIA GTX 4090 within 10 hours.

Notably, although we adopt a decoder-only Transformer
architecture similar to DressCode, our innovative approach

Chat Interface

Figure 11. LMM-based interface for Design2GarmentCode, built upon the original GarmentCode GUI. The chat interface (left) allows
users to provide natural language design descriptions or upload reference images or sketches, facilitating multi-modal design parsing into
executable GarmentCode programs. We use the original GarmentCode execution engine to turn the generated program into 3D garments.

Figure 12. User study interface for evaluating sewing pattern generation quality. For each test input (Original image on the left for image-
based evaluation or Text Description on the right for text-based evaluation), participants are presented with the simulation results of sewing
patterns generated by Design2GarmentCode and a baseline method. Users are asked to evaluate the results based on two criteria: agreement
with the input description and overall sewing pattern quality. If unsure, participants can select the ”Unsure” option.

of quantifying sewing patterns through design parame-
ters proves to be significantly more efficient and scalable.
Specifically, with DressCode’s quantization scheme, the to-

ken sequence length is calculated as:

Lseq = Np × (Ne × Le + ∥R∥+ ∥T∥+Ne × ∥S∥) + 2

where Np, Ne denotes the maximum number of panels
and edges respectively. ∥R∥ = 4 is the length of rota-

Figure 13. Example answers from Llama 3.2 3B when prompted
with “How to draft a basic upper body bodice?”.

tion quaternions, and ∥T∥ = 3 is the length of 3D trans-
lation vector. ∥S∥ = 4 represents the per-edge stitching
parameters containing a stitch tag and its existence indi-
cator. Le represent the length of quantified edge vectors,
which might be 6 for cubic bezier curves and 4 for quadratic
bezier curves. Using GarmentCodeData as an example, to
fully cover GarmentCode’s modeling space, the required se-
quence length under DressCode’s method would be 13, 951,
with Np = Ne = 37, Le = 6, which will cost ≈ 1.5h to
generate a single sewing pattern using DressCode, while our
token sequence length is fixed at 122.

8.3. Inference Interface

For more convenient inference, we build an intelligent
chat-based interface integrated into the original Garment-
Code [31] GUI (Figure 11). The chat interface (left
panel) enables users to provide natural language descrip-
tions, upload reference images, or supply design sketches,
facilitating multi-modal design parsing into GarmentCode-
compliant programs which are then passed to the Garment-
Code execution engine. The engine generates sewing pat-
terns and 3D garment simulations (right panel). This inter-
active interface provides an intuitive environment for creat-
ing, editing, and refining sewing patterns, significantly im-
proving accessibility for users without extensive expertise
in parametric pattern-making. We provide a recording to
demostrate the inference process in demo.mp4.

8.4. User Study Interface

To evaluate the quality of sewing pattern generation, we
design a user study interface tailored for comparison (Fig-
ure 12). For each test input—either an original image (for
image-based evaluation) or a text description (for text-based
evaluation)—the interface presents participants with sim-
ulated garment results generated by Design2GarmentCode
and a baseline method. Participants assess the results based
on two criteria: Agreement, which measures how well the
generated patterns align with the input description, and Aes-
thetic, which evaluates the structural integrity and aesthetic
appeal quality of the patterns. An ”Unsure” option is avail-
able for cases where a clear preference cannot be deter-
mined, ensuring unbiased and flexible feedback.

9. LMM Prompting Details
9.1. Pattern Drafting Test

As outlined in Sec. 3.2.1, a key prerequisite for De-
sign2GarmentCode is the presence of embedded pattern-
drafting knowledge in pre-trained large models. To assess
this capability, we prompted models like O1-preview and
LLama 3.2 3B Instruct with the question, ”How to draft a
basic upper body bodice?”. These models produced step-
by-step drafting instructions in natural language, including
commands such as: ”STEP 1: Take Your Measurements,”
and ”STEP 2: Draw the Center Front Line, Draw the Shoul-
der Line, Draw the Armhole, Draw the Side Seam (Measure
the distance from the underbust measurement and divide it
by 4. Mark this distance from the armhole point down to
the waist. Draw a vertical line to represent the side seam).”
Figure 13 showcases sample outputs from Llama-3.2-3B In-
struct which we used as baseline for DSL-GA.

9.2. Prompting for MMUA

Based on different input design modalities and tasks, we
assigned five specific tasks to the MMUA.

Task 1: Identify the image, extract answers for each
prompt question based on the image, and combine them to
form the recognized clothing information. This task estab-
lishes the relationships between parameters and the ques-
tions corresponding to each parameter. It serves as the foun-
dation for all subsequent tasks.

Task 2: Generate clothing information based on text.
Building on Task 1, this task generates clothing prototype
information according to user preferences.

Task 3: Retrieve existing clothing information and mod-
ify the clothing design according to the user’s ideas.

Task 4: Input stress test images along with the current
clothing information from the text space. MMUA interprets
the colors in the image as stress levels—red, yellow, or sim-
ilar colors indicate areas that are too tight. MMUA dynam-
ically adjusts the clothing information to reduce stress.

demo.mp4

(a) Thin Structure (Halter-neck) (c) Partial Stitching(b) Unconventional Bodices

Figure 14. Limitations of Design2GarmentCode, including failed to modeling thin structures like halter-neck, unable to model unconven-
tional bodices and stitching relationships are limited to one-to-one mapping.

Task 5: Compare previously generated clothing simula-
tion images, their corresponding clothing information, and
the original input image. Identify differences between the
simulation and the original image, and dynamically adjust
the clothing information to make the final simulation image
more closely resemble the original.

As discussed in Sec. 3.2.2, due to the probabilistic na-
ture of LMMs, the MMUA struggles to accurately esti-
mate numerical values in the design configuration. There-
fore, we limit the MMUA’s task to answering multiple-
choice questions, with responses formatted as a selective
parameter list. List1 illustrates example parameters before
(design cfg num) and after (design cfg slc) mod-
ification. The complete prompt will be publicly available
with Design2GarmentCode code base.

10. Limitations
A limitation of Design2GarmentCode is its current inability
to substantially modify GarmentCode’s underlying struc-
ture and logic, which impacts the generation quality due to
inherent constraints in GarmentCode’s design and modeling
capabilities. For example, the range of upper garment pat-
terns is limited, making it difficult to model personalized
segmentations (Figure 14 (b)). Additionally, for designs
like halter necks or strapless tops (Figure 14 (a)), Garment-
Code cannot model fine straps, leading to potential simula-
tion failures. These constraints restrict the system’s ability
to accurately represent certain complex or customized gar-
ment designs.

11. Additional Results

1 # Numerical parameters

2 design_cfg_num = [

3 # Meta Section

4 "meta.upper.v=Shirt",

5 "meta.wb.v=FittedWB", # waistband type

6 "meta.bottom.v=SkirtLevels",

7 "meta.connected.v=False",

8 # Waistband Section

9 "waistband.waist.v=1.05", # Fitted

10 "waistband.width.v=0.2", # Narrow

11 # Fitted Shirt Section

12 "fitted_shirt.strapless.v=False",

13 # Shirt Section

14 "shirt.length.v=1.55", # Long

15 ...

16]

17

18 # Selective parameters

19 design_cfg_slc = [

20 # Meta Section

21 "meta__upper__Shirt",

22 "meta__wb__FittedWB", # waistband type

23 "meta__bottom__SkirtLevels",

24 "meta__connected__False",

25 # Waistband Section

26 "waistband__waist__fitted", # Fitted

27 "waistband__width__narrow", # Narrow

28 # Fitted Shirt Section

29 "fitted_shirt__strapless__False",

30 # Shirt Section

31 "shirt__length__long", # Long

32 ...

33]

Listing 1. Example of original design configurations with numer-
ical values and modified design configurations with only selective
parameters.

coat,

long sleeves,
long length

Dress,

floor-length,
boat neck,
layered skirt,
tight fit,

short sleeves

Dress,

loose fit,
scoop neck,
knee-length,
circle skirt,
long sleeves

Dress,

mini-length,
sleeveless,

layered skirt,
tight fit,

halter neck

Dress，

long
sleeves,

knee-length,

turtleneck,

pencil style

Dress,

short sleeves,

midi-length,

square neck,

A-line

Dress,

sleeveless,

midi-length,

V-neck,

A-line_pattern

Dress,

empire waist,
sweetheart
neckline,
layered skirt,
sleeveless,
floor-length

Jumpsuit,

short sleeves,

fitted,

scoped
length,

knee-length,

V-neck,

straight leg

Pants,

ankle-length,

normal
width,

cuffed hem

Pants,

capri-length,

normal
width,

cuffed hem

Pants,

full-length,

fitted
width,

cuffed hem

Shirt,

sleeveless,

super-cropped

length,

henley style

Shirt,

three-quarter

sleeves,

regular
length,

boat neck

Skirt,

above-knee

length,

tight fit,

low waist

Outfit,

long-sleeve
shirt,

regular length,

mandarin collar,

skirt,

mini-length,

tight fit,

high waist

Figure 15. Additional Text-guided generation results. From left to right: input text; output from MMUA; generated sewing pattern;
simulation results.

Figure 16. Additional Image-guided generation results. From left to right: input image; output from MMUA; generated sewing pattern;
simulation results.

Figure 17. Additional Sketch-guided generation results. From left to right: input sketch; output from MMUA; generated sewing pattern;
simulation results.

Change the short sleeves to . sleeveless Change the mini length to .above-knee lengthChange the round neckline to a .V-neck

Change the short sleeves to .sleeveless Change the wide-leg pants to . jogger pants Change the neckline to a .curved neckline

Change the round neckline to a .V-neck Change the sleeves to .long sleevesAdd a .hat

Change the three-quarter sleeves to .long sleeves Change the pencil skirt to a .midi-length skirtChange the deep trapezoid neckline to a .shallow neckline

Change the super-cropped top to a .regular-length top Change the shallow neckline to a .deep necklineChange the three-quarter sleeves to .long sleeves

 Change the short sleeves to .sleeveless Shorten the skirt.Change the tiered skirt to an .asymmetric circular skirt

Change the sweetheart neckline to a .V-neck Change the knee-length hem to an .ankle-length hemChange the shallow neckline to a .deep neckline

Change the one-shoulder design to a . halter-neck design Add a at the waist. beltChange the midi length to . mini length

Original Design Edited Design 1 Edited Design 2 Edited Design 3

Figure 18. Additional sewing pattern editing results.Starting from the original sewing pattern on the far left, the system applies user
instructions to edit the pattern. The left side of each arrow represents the original pattern, while the right side displays the edited result.

	. Introduction
	. Related Work
	. Garment Modeling with Sewing Patterns
	. LLMs for Program Synthesis
	. Neurosymbolic Models

	. Method
	. Parametric Sewing Patterns
	. The Design2GarmentCode System
	Program Learning
	Program Synthesis

	. Experiments
	. Quantitative Evaluation
	. Multi-modal Generation Results

	. Application
	. Conclusion
	. Validations in Design2GarmentCode
	. Rule-based Validation
	. MMUA Design Comparison

	. Implementation Details
	. Finetuning DSL-GA ft
	. Training The Projector
	. Inference Interface
	. User Study Interface

	. LMM Prompting Details
	. Pattern Drafting Test
	. Prompting for MMUA

	. Limitations
	. Additional Results

