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Abstract

In the main paper, we present a method to prevent forget-
ting in domain-incremental learning through representation
and classifier consolidation. The supplementary material
provides additional details on the algorithm and experimen-
tal results mentioned in the main paper, along with extra
empirical evaluations and discussions. The organization of
the supplementary material is as follows:

• Section I provides the pseudocode of DUCT.
• Section II presents detailed experimental results, in-

cluding the running time comparison, detailed perfor-
mance on different task orders, and results with other
pre-trained weights.

• Section III introduces the details about the datasets
adopted in the main paper, including the number of
tasks and images and differently-ordered sequences of
tasks.

• Section IV introduces the compared methods adopted
in the main paper.

• Section V presents a series of additional experiments
to further validate the robustness of DUCT.

I. Algorithm Pipeline
Following the notation presented in the main body, we sum-
marize the training steps in Algorithm 1.

First of all, we prepare the dataset and load the pre-
trained model weights, then calculate the mean representa-
tion for each incoming class, as shown in Lines 2∼3. Next,
we fine-tune the model and extract the task vector, which
is then used to apply the model merging technique, as de-
scribed in Line 5. After that, we keep the merged backbone
frozen and retrain the classification layer to align it with
the consolidated representation. Finally, we apply classifier
transport to the classifiers to transfer semantic information,
as outlined in Lines 7∼8.

†Correspondence to: Han-Jia Ye (yehj@lamda.nju.edu.cn)

Algorithm 1 DUCT for DIL
Input: Incremental datasets:

{
D1,D2, · · · ,DB

}
,

Pre-trained embedding: ϕ0(x);
Output: Incrementally trained model;

1: for b = 1, 2 · · · , B do
2: Get the incremental training set Db;
3: Extract class centers via Eq. 5;
4: Optimize the model via Eq. 2 ;
5: Consolidate representations via Eq. 7;
6: Retrain new classifiers via Eq. 8;
7: Solve OT via Eq. 9;
8: Consolidate old classifiers via Eq. 10;

return the updated model;
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Figure 1. Running time comparison among different methods.
DUCT shows the best performance while having competitive
training costs.

II. Supplied Experimental Results

In this section, we supply additional experiments to show
the effectiveness of DUCT, including the running time com-
parison, the detailed performance among different task or-
ders, and more results with other pre-trained weights.
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(a) CDDB ViT-B/16 IN1K
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(b) CORe50 ViT-B/16 IN1K
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(c) DomainNet ViT-B/16 IN1K
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(d) Office-Home ViT-B/16 IN1K

Figure 2. Incremental performance of different methods with ViT-B/16 IN1K. We report the performance gap after the last incremental
stage between DUCT and the runner-up method at the end of the line.

II.1. Running time comparison

In this section, we report the running time comparison
among different compared methods. As shown in Figure 1,
DUCT costs competitive running time against other com-
pared methods while having the best performance.

II.2. Performance of different task orders

In the main paper, we conduct experiments on the bench-
mark datasets with five task orders and report the average
performance. In this section, we report the performance on
each order in Table 1, 2, 3, 4, 5. The task sequences are
reported in Section III.2.

II.3. Different backbones

In the main paper, we mainly report the performance using
ViT-B/16-IN1K. In this section, we present performance on
the remaining benchmark in Figure 2 and all the experimen-
tal results on ViT-B/16-IN21K in Figure 3, demonstrating
the model’s robustness to changes in backbones.

III. Dataset Details

In this section, we introduce the details about datasets, in-
cluding the dataset information (i.e., the number of tasks
and instances) and split information (i.e., the five splits
adopted in the main paper).
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(b) CORe50 ViT-B/16 IN21K
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(c) DomainNet ViT-B/16 IN21K
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(d) Office-Home ViT-B/16 IN21K

Figure 3. Incremental performance of different methods with ViT-B/16 IN21K. We report the performance gap after the last incremental
stage between DUCT and the runner-up method at the end of the line.

III.1. Dataset introduction
We report the details about benchmark datasets in Table 6,
and they are listed as follows.

• DomainNet [8]* is a dataset of common objects in six
different domains. All domains include 345 categories
of objects, such as bracelets, planes, birds, and cel-
los. The domains include clipart — a collection of
clipart images; real — photos and real-world images;
sketch — sketches of specific objects; infograph —
infographic images with specific objects; painting —
artistic depictions of objects in the form of paintings,

*https://ai.bu.edu/M3SDA/

and quickdraw — drawings of the worldwide players
of the game ‘Quick Draw!’. We use the officially rec-
ommended version ‘Cleaned’ in this paper.

• Office-Home [12]† is a benchmark dataset for domain
adaptation which contains four domains where each
domain consists of 65 categories. The four domains
are Art — artistic images in the form of sketches,
paintings, ornamentation, etc.; Clipart — a collection
of clipart images; Product — images of objects without
a background; and Real World — images of objects
captured with a regular camera. It contains 15,500 im-
ages, with an average of around 70 images per class

†https://hemanthdv.github.io/officehome-dataset/



Table 1. Average and last performance of different methods with the 1st task order in Section III.2. The best performance is shown in bold.
All methods are implemented with ViT-B/16 IN1K. Methods with † indicate implementations with exemplars (10 per class).

Method Office-Home DomainNet Core50 CDDB
Ā AB Ā AB Ā AB Ā AB

Finetune 73.48 76.23 47.99 35.80 74.44 72.18 50.23 50.23
Replay† 80.62 83.80 64.68 62.88 85.71 91.66 50.26 50.91
iCaRL† [10] 77.63 82.03 60.25 59.05 76.79 81.60 49.63 49.77
MEMO† [17] 70.17 59.80 60.65 60.33 64.89 67.55 53.00 53.67
SimpleCIL [19] 71.60 75.72 39.61 44.08 70.81 74.80 54.52 63.40
L2P [15] 74.49 78.44 49.00 51.07 83.47 88.33 58.69 67.89
DualPrompt [14] 75.88 80.72 51.92 52.73 85.42 88.09 63.10 71.72
CODA-Prompt [11] 81.20 85.17 58.49 58.21 87.70 90.85 63.33 72.28
EASE [18] 78.56 77.15 53.04 45.63 86.28 88.98 66.47 72.18
RanPAC [7] 78.72 82.28 53.48 54.97 79.44 81.32 72.47 81.04
S-iPrompt [13] 77.32 80.42 58.21 58.88 80.91 82.09 61.75 73.23

DUCT 83.76 86.79 67.28 68.52 92.06 94.83 78.32 84.98

Table 2. Average and last performance of different methods with the 2rd task order in Section III.2. The best performance is shown in bold.
All methods are implemented with ViT-B/16 IN1K. Methods with † indicate implementations with exemplars (10 per class).

Method Office-Home DomainNet Core50 CDDB
Ā AB Ā AB Ā AB Ā AB

Finetune 76.50 74.37 36.94 32.04 72.70 76.93 50.99 47.88
Replay† 83.04 83.48 59.22 62.27 85.90 93.36 56.52 62.45
iCaRL† [10] 81.48 81.90 53.75 57.91 75.54 81.17 61.08 76.31
MEMO† [17] 71.44 62.92 53.41 57.04 61.30 67.52 50.54 48.59
SimpleCIL [19] 68.45 75.72 38.18 44.08 71.63 74.80 63.19 63.40
L2P [15] 75.30 79.03 45.15 50.90 83.63 87.57 67.01 70.56
DualPrompt [14] 75.41 80.70 46.31 52.29 84.09 87.55 59.85 72.07
CODA-Prompt [11] 81.21 84.53 52.86 57.38 87.91 91.21 63.05 73.53
EASE [18] 75.96 74.76 47.31 44.62 86.32 86.69 64.08 69.19
RanPAC [7] 78.03 82.28 50.11 54.98 79.44 81.32 75.00 81.04
S-iPrompt [13] 78.27 80.81 54.51 60.06 82.09 83.72 61.46 72.23

DUCT 81.95 86.90 62.04 68.17 91.70 93.99 80.72 84.91

and a maximum of 99 images in a class.

• CDDB-Hard [5]‡. As a dataset mixed with real-world
and model-generated images, the continual deepfake
detection benchmark (CDDB) aims to simulate real-
world deepfakes’ evolution. The authors put out three
tracks for evaluation, ‘EASY,’ ‘Hard,’ and ’Long,’ re-
spectively. Following [13], we choose the ’Hard’ track
for evaluation since it poses a more challenging prob-
lem due to its complexity.

• CORe50 [6]§. Composed of 11 sessions characterized
by different backgrounds and lighting, CORe50 is built
for continual object recognition. Numerous RGB-D
images are divided into 8 indoor sessions for training

‡https://coral79.github.io/CDDB web/
§https://vlomonaco.github.io/core50/index.html#dataset

and 3 outdoor sessions for testing, and each session
includes a sequence of about 300 frames for all 50 ob-
jects.

III.2. Domain Sequences
In domain-incremental learning, different algorithms’ per-
formances may be influenced by the order of domains. Con-
sequently, we randomly shuffle the domains and organize
five domain orders in the main paper, which are further uti-
lized for a holistic evaluation. The task orders are reported
in Table 7, 8, 9, 10.

IV. Compared Methods
In this section, we introduce the methods that were com-
pared in the main paper. Note that we re-implement all
methods using the same pre-trained model as initializa-



Table 3. Average and last performance of different methods with the 3rd task order in Section III.2. The best performance is shown in bold.
All methods are implemented with ViT-B/16 IN1K. Methods with † indicate implementations with exemplars (10 per class).

Method Office-Home DomainNet Core50 CDDB
Ā AB Ā AB Ā AB Ā AB

Finetune 81.82 74.93 44.84 29.45 77.35 79.12 51.68 52.81
Replay† 86.98 84.10 67.23 60.52 84.91 91.60 87.52 75.30
iCaRL† [10] 84.40 81.64 61.74 54.41 75.54 81.17 88.66 86.05
MEMO† [17] 75.50 63.23 62.97 56.99 68.42 71.78 53.94 52.55
SimpleCIL [19] 76.32 75.72 45.74 44.08 69.67 74.80 56.64 63.40
L2P [15] 81.94 79.57 52.16 45.05 84.21 88.24 67.87 67.87
DualPrompt [14] 82.45 80.79 54.01 49.28 84.91 88.39 66.26 71.19
CODA-Prompt [11] 63.05 73.53 60.91 56.08 88.58 91.20 68.77 76.26
EASE [18] 81.45 74.76 52.19 40.81 86.26 85.26 67.48 72.18
RanPAC [7] 83.84 82.28 57.57 54.08 78.07 81.62 78.46 81.04
S-iPrompt [13] 83.40 80.68 64.02 61.22 82.65 84.20 69.30 72.99

DUCT 87.31 86.94 70.08 67.06 91.97 94.78 88.84 85.84

Table 4. Average and last performance of different methods with the 4th task order in Section III.2. The best performance is shown in bold.
All methods are implemented with ViT-B/16 IN1K. Methods with † indicate implementations with exemplars (10 per class).

Method Office-Home DomainNet Core50 CDDB
Ā AB Ā AB Ā AB Ā AB

Finetune 82.10 77.09 25.82 16.65 75.97 75.21 53.80 50.42
Replay† 86.38 82.67 65.35 60.26 85.89 92.23 89.91 77.27
iCaRL† [10] 83.38 78.71 58.30 51.55 68.25 72.91 92.67 88.60
MEMO† [17] 71.84 65.06 62.28 54.18 68.20 69.76 87.53 80.93
SimpleCIL [19] 81.31 75.72 40.06 44.08 71.73 74.80 66.56 63.40
L2P [15] 85.49 81.71 48.59 45.47 83.35 87.01 77.38 61.50
DualPrompt [14] 84.74 81.02 50.90 46.77 85.23 86.89 81.46 72.89
CODA-Prompt [11] 71.06 74.84 60.17 55.89 88.10 91.79 79.73 73.98
EASE [18] 84.69 74.76 48.28 42.92 86.30 86.69 70.23 50.48
RanPAC [7] 86.59 82.28 54.97 53.48 79.31 81.32 85.28 79.66
S-iPrompt [13] 85.52 80.19 61.32 60.89 82.11 83.50 81.28 73.06

DUCT 89.79 86.98 64.12 64.70 92.12 94.56 89.38 84.31

tion. They are listed as follows.

• Finetune is a simple baseline in DIL, which directly
optimizes the model with cross-entropy loss. It will
suffer catastrophic forgetting since there is no restric-
tion on preserving previous knowledge.

• Replay [9] is an exemplar-based method, which saves
a set of exemplars from previous domains (i.e., in this
paper, we save 10 exemplars per class) and replay them
when learning new domains. Hence, forgetting can
be alleviated since the model can revisit informative
instances from previous domains when learning new
ones. Of note, for classes with fewer than 10 instances,
repeatable sampling is allowed to conform to the re-
quirement.

• iCaRL [10] is a knowledge distillation-based contin-
ual learning algorithm, which saves the previous model

in memory. During updating, apart from the cross-
entropy loss for learning new tasks, it also introduces
the knowledge distillation loss between old and new
models to avoid forgetting. It also requires saving an
increasing number of exemplars.

• MEMO [17] is an expansion-based continual learning
algorithm that partially expands the network to catch
new features. As for the implementation, we follow
the original paper to decouple the network and expand
the last transformer block for each new task.

• SimpleCIL [19] proposes this simple baseline in pre-
trained model-based continual learning. It freezes the
backbone representation, extracts the class center of
each class, and utilizes a cosine classifier updated by
assigning class centers to the classifier weights.



Table 5. Average and last performance of different methods with the 5th task order in Section III.2. The best performance is shown in bold.
All methods are implemented with ViT-B/16 IN1K. Methods with † indicate implemented with exemplars (10 per class).

Method Office-Home DomainNet Core50 CDDB
Ā AB Ā AB Ā AB Ā AB

Finetune 77.69 78.18 38.49 26.9 76.73 77.52 53.40 49.21
Replay† 84.12 84.72 67.45 59.88 85.37 92.22 50.34 50.12
iCaRL† [10] 80.99 81.26 62.11 54.14 74.86 77.55 50.10 49.77
MEMO† [17] 66.95 64.24 70.29 63.49 61.18 64.61 53.36 50.35
SimpleCIL [19] 80.75 75.72 51.15 44.08 70.78 74.80 63.06 63.40
L2P [15] 81.37 81.38 57.33 51.13 83.21 88.22 65.68 54.42
DualPrompt [14] 82.55 81.00 57.33 48.12 82.99 83.48 71.00 69.18
CODA-Prompt [11] 63.33 72.28 66.85 57.41 87.33 92.81 71.06 74.84
EASE [18] 85.13 80.23 51.68 44.62 86.37 87.47 70.65 60.75
RanPAC [7] 84.31 82.28 61.48 54.98 79.52 81.32 83.39 79.64
S-iPrompt [13] 82.70 80.47 67.73 61.23 81.98 83.38 68.76 72.09

DUCT 88.55 86.92 72.29 66.59 91.88 94.21 83.46 85.48

Table 6. Details on domain size, train/test split, and instance number of the benchmark datasets. The dataset split and selection follows [11,
13–15].

Domains Size Test set

CDDB-Hard

biggan 4.0k
standard splitsgaugan 10.0k

75%:25%san 440
(’san’ - 80%:20%)whichfaceisreal 2.0k

wild 10.5k

CORe50

s1 14.9k

s3, s7, s10

s2 14.9k

Indoor:Outdoor 8:3

s4 14.9k
s5 14.9k
s6 14.9k
s8 14.9k
s9 14.9k

s11 14.9k

DomainNet

clipart 48.1k

standard splits
infograph 51.6k

70%:30%
painting 72.2k

quickdraw 172.5k
real 172.9k

sketch 69.1k

Office-Home

Art 2.4k
random splitsClipart 4.3k

70%:30%Product 4.4k
Real World 4.3k

• L2P [15] is the first work introducing prompt tuning
in continual learning. With the pre-trained weights
frozen, it learns a prompt pool containing many
prompts. During training and inference, instance-
specific prompts are selected to produce the instance-

specific embeddings. However, as alluded to before,
learning new domains will lead to the overwriting of
existing prompts, thus triggering forgetting.

• DualPrompt [14] extends L2P in two aspects. Apart
from the prompt pool and prompt selection mecha-



Table 7. Task orders of CDDB-Hard.

CDDB-Hard Task 1 Task 2 Task 3 Task 4 Task 5

Order 1 san whichfaceisreal biggan wild gaugan
Order 2 wild whichfaceisreal san gaugan biggan
Order 3 biggan gaugan wild whichfaceisreal san
Order 4 gaugan biggan wild whichfaceisreal san
Order 5 whichfaceisreal san gaugan biggan wild

Table 8. Task orders of CORe50.

CORe50 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

Order 1 s11 s4 s2 s9 s1 s6 s5 s8
Order 2 s2 s9 s1 s6 s5 s8 s11 s4
Order 3 s4 s1 s9 s2 s5 s6 s8 s11
Order 4 s1 s9 s2 s5 s6 s8 s11 s4
Order 5 s9 s2 s5 s6 s8 s11 s4 s1

Table 9. Task orders of DomainNet.

DomainNet Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

Order 1 clipart infograph painting quickdraw real sketch
Order 2 infograph painting quickdraw real sketch clipart
Order 3 painting quickdraw real sketch clipart infograph
Order 4 quickdraw real sketch clipart infograph painting
Order 5 real quickdraw painting sketch infograph clipart

Table 10. Task orders of Office-Home.

Office-Home Task 1 Task 2 Task 3 Task 4

Order 1 Art Clipart Product Real World
Order 2 Clipart Product Real World Art
Order 3 Product Clipart Real World Art
Order 4 Real World Product Clipart Art
Order 5 Art Real World Product Clipart

nism, it further introduces prompts instilled at differ-
ent depths and task-specific prompts. During training
and inference, the instance-specific and task-specific
prompts work together to adjust the embeddings.

• CODA-Prompt [11] aims to avoid the prompt selec-
tion cost in L2P. It treats prompts in the prompt pool
as bases and utilizes the attention results to combine
multiple prompts as the instance-specific prompt.

• EASE [18] designs lightweight feature expansion
technique with adapters to learn new features as data
devolves. To fetch a classifier with the same dimen-
sion as ever-expanding features, it utilizes class-wise
similarity to complete missing class prototypes.

• RanPAC [7] extends SimpleCIL by randomly project-
ing the features into the high-dimensional space and
learning the online LDA classifier for final classifica-

tion.
• S-iPrompt [13] is specially designed for pre-trained

model-based domain-incremental learning. It learns
task-specific prompts for each domain and saves do-
main centers in the memory with K-Means. During
inference, it first forwards the features to select the
nearest domain center via KNN search. Afterward, the
selected prompt will be appended to the input.

V. More Experiments

To further demonstrate the effectiveness of DUCT in differ-
ent scenarios, we conduct a series of more comprehensive
experiments in this section.



Table 11. Incremental performances of methods on five representative pre-trained models, i.e., ResNet101, ViT-S/16, ViT-B/16-IN1K,
ViT-B/16-IN21K, and ViT-B/16-DINO, comparing the selected best-performing algorithms and DUCT. ‘NA’ indicates that these methods
are incompatible with ResNet. DUCT achieves the optimal performances across all backbones.

ResNet101 ViT-S/16 ViT-B/16-DINO ViT-B/16-IN1K ViT-B/16-IN21K

CODA-Prompt [11] NA 52.90 55.47 58.49 58.99
EASE [18] NA 40.84 38.72 53.04 53.11

S-iPrompt [13] NA 55.12 60.12 58.21 60.13

DUCT 50.22 64.55 62.89 67.28 67.37

Table 12. The upper bound on the performance of ViT-B/16-
IN21K for all benchmarks, i.e., the performance achieved by fine-
tuning on the union of the entire dataset.

CDDB-Hard Core50 DomainNet Office-Home

Upperbound 93.44 96.29 76.28 87.92

V.1. More backbones

Apart from ViT-B/16-IN1K and ViT-B/16-IN21K, we also
evaluate additional backbones at different scales, including
ResNet101 [3], ViT-S/16, and ViT-B/16-DINO [1]. The re-
sults are reported in Table 11. Note that the compared meth-
ods are all based on prompt tuning technique [4] which is
designed for Vision Transformers [2]. Hence, these com-
pared methods are incompatible with ResNet structures,
while DUCT can still boost ResNet in continual learning
tasks, further highlighting that DUCT is a general and ver-
satile framework. The outcomes demonstrate that DUCT
outperforms all competitors across all PTMs.

V.2. Upper bound performance

To investigate the upper-bound performance of each dataset,
we conduct joint training and present the results in Table 12.
We follow [16] and adopt a learning rate of 0.0001 for the
representation layer and 0.01 for the classification layer,
with a batch size of 128. We report the optimal results in
the table.

V.3. Class-Incremental Learning experiments

Since DUCT is a general framework, it can also be ap-
plied to the class-incremental learning (CIL) scenario. By
equally splitting 345 classes of DomainNet into 5 incremen-
tal stages, we formulate a class-incremental learning set-
ting, each containing 69 classes. We keep the other settings
the same as in the main paper and report the results in Ta-
ble 13. The results indicate that DUCT can also be applied
to the class-incremental learning setting, which we shall ex-
plore in future work.

Table 13. Incremental performances of selected methods on CIL
setting, evaluated on the most challenging benchmark dataset, Do-
mainNet, using ViT-B/16-IN21K as the backbone. ‘B0’ indicates
that classes are uniformly split across tasks. The results indicate
that DUCT performs effectively in CIL scenarios.

Method DomainNet B0 Inc69
Ā AB

CODA-Prompt [11] 72.50 71.05
EASE [18] 69.29 68.45
S-iPrompt [13] 73.79 71.81

DUCT 75.29 74.68
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