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Table 1. Zero-shot accuracy across 17 video datasets under semi-supervised VOS evaluation using different prompts. For all prompt
types, the annotation is only provided on the first frame. †: When the ground-truth mask is available, SAM is not used for XMem++ and
Cuite.

Method 1-click 3-click 5-click bounding box ground-truth mask†

SAM + XMem++ [3] 56.9 68.4 70.6 67.6 72.7
SAM + Cutie [6] 56.7 70.1 72.2 69.4 74.1
SAM 2 [17] 64.3 73.2 75.4 72.9 77.6
SAM 2.1 [17] 64.7 75.3 77.6 74.4 79.3

EdgeTAM 54.4 72.7 75.5 71.3 77.0

1. Video Object Segmentation (VOS)

In our main submission, we follow the standard semi-
supervised video object segmentation protocol, where the
ground-truth masks on the first frame are available dur-
ing inference. In Tab. 1, we follow SAM 2 [17] and in-
stead of making the masks on the first frame available, we
prompt the object of interest with clicks or boxes on the
first frame. Given that XMem++ and Cutie do not sup-
port these prompts, we convert the prompt to masks with
SAM [15]. We evaluate on 17 zero-shot datasets including
EndoVis 2018 [2], ESD [14], LVOSv2 [13], LV-VIS [20],
UVO [21], VOST [18], PUMaVOS [3], Virtual KITTI 2
[5], VIPSeg [16], Wildfires [19], VISOR [8], FBMS [4],
Ego-Exo4D [11], Cityscapes [7], Lindenthal Camera [12],
HT1080WT Cells [10], and Drosophila Heart [9].

In this evaluation suite, except for the 1-click setting, Ed-
geTAM surpasses the strong baselines, SAM + XMem++
and SAM + Cutie, by 2 to 5 percent. Compared to SAM
2 and SAM 2.1, EdgeTAM still preserves comparable per-
formance especially with more accurate prompts, such as
5-click and ground-truth mask.

2. Implementation Details

We generally follow the original SAM 2 training hyper-
parameters for image segmentation pre-training [15] and
video segmentation training [17]. Here, we highlight only
the differences, and the full training details are shown in
Tab. 2. First, we do not apply drop path or layer-wise decay
in the image encoder. Second, our image pre-training stage
adopts a 128 batch size and a total of 175K training steps.
In the video training stage, we reduce the maximum number
of masks per image from 64 to 32. More importantly, we do
not train on the SAM 2 Internal dataset so the total training
steps are reduced from 300K to 130K. Finally, our training
involves distillation losses in both stages.

3. Speed Benchmark
In the main paper, we provide the throughput FPS on both
server GPUs (NVIDIA A100 and V100) and mobile NPU
(iPhone 15 Pro Max). The V100 benchmarks are collected
from each individual paper and we benchmark with the
other two hardware by ourselves. In particular, to optimize
the throughput, on A100, we torch compile all the models.
For mobile NPU, we convert the model to CoreML format
with coremltools [1] and benchmark with the performance
report tool of XCode with iOS 18.1 on an iPhone 15 Pro
Max. Note that, the speed-up ratios of EdgeTAM v.s. SAM
2 are less pronounced on A100 than on iPhone. To under-
stand the root cause, we monitor the streaming multiproces-
sor (SM) utilization of both models on A100 and find that
even with torch compile, the SM usage of EdgeTAM is less
than 50% and the inference is bottlenecked on CPU and IO.
We think it is because high-end server GPUs, such as A100,
have an enormous amount of parallel executable units (EU)
and given the tiny size of EdgeTAM, it cannot occupy all
the EUs at the same time. However, the design objective of
EdgeTAM is edge devices, such as mobile phones, where
we see 22× speed-up compared with SAM 2.

4. Video Results
To better show the qualitative results of EdgeTAM, in
5205.mp4, we provide the tracking results in the video for-
mat across several challenging cases.



Table 2. Hyperparameters and details of EdgeTAM image segmentation pre-training and video segmentation training.

(a) Image segmentation pre-training.

Config Value

data SA-1B
steps ∼175K
resolution 1024
precision bfloat16
optimizer AdamW
optimizer momentum β1, β2 = 0.9, 0.999
gradient clipping type: ℓ2, max: 0.1
weight decay 0.1
learning rate (lr) 4e−4

lr schedule reciprocal sqrt
timescale=1000

warmup linear, 1K iters
cooldown linear, 5K iters
augmentation hflip
batch size 128
mask losses (weight) focal (20), dice (1)
IoU loss (weight) ℓ1 (1)
distill loss (weight) MSE (1)
max. masks per img. 64
# correction points 7

(b) Video segmentation training.

Config Value

data SA-1B, SA-V, DAVIS, MOSE, YTVOS
steps ∼130K
resolution 1024
precision bfloat16
optimizer AdamW
optimizer momentum β1, β2 = 0.9, 0.999
gradient clipping type: ℓ2, max: 0.1
weight decay 0.1
learning rate (lr) backbone: 6e−5, other: 3e−4

lr schedule cosine
warmup linear, 15K iters
img. augmentation hflip
vid. augmentation hflip,

affine (deg: 25, shear: 20),
colorjitter (0.1),
grayscale (0.05),
per frame colorjitter (0.1)

batch size 256
mask losses (weight) focal (20), dice (1)
IoU loss (weight) ℓ1 (1)
occlusion loss (weight) cross-entropy (1)
distill loss (weight) MSE (1) for both Limg and Lmem
max. masks per frame image: 32, video: 3
# correction points 7
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Barrutia. Search for temporal cell segmentation robust-
ness in phase-contrast microscopy videos. arXiv preprint
arXiv:2112.08817, 2021. 1

[11] Kristen Grauman, Andrew Westbury, Lorenzo Torresani,
Kris Kitani, Jitendra Malik, Triantafyllos Afouras, Kumar
Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote,
et al. Ego-exo4d: Understanding skilled human activity from
first-and third-person perspectives. In CVPR, 2024. 1

[12] Timm Haucke and Volker Steinhage. Exploiting depth
information for wildlife monitoring. arXiv preprint
arXiv:2102.05607, 2021. 1

[13] Lingyi Hong, Zhongying Liu, Wenchao Chen, Chenzhi Tan,
Yuang Feng, Xinyu Zhou, Pinxue Guo, Jinglun Li, Zhaoyu
Chen, Shuyong Gao, et al. Lvos: A benchmark for large-
scale long-term video object segmentation. arXiv preprint
arXiv:2404.19326, 2024. 1

[14] Xiaoqian Huang, Kachole Sanket, Abdulla Ayyad, Fari-
borz Baghaei Naeini, Dimitrios Makris, and Yahya Zweiri. A
neuromorphic dataset for object segmentation in indoor clut-
tered environment. arXiv preprint arXiv:2302.06301, 2023.
1

[15] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In CVPR, 2023. 1

https://github.com/apple/coremltools
https://github.com/apple/coremltools


[16] Jiaxu Miao, Xiaohan Wang, Yu Wu, Wei Li, Xu Zhang, Yun-
chao Wei, and Yi Yang. Large-scale video panoptic segmen-
tation in the wild: A benchmark. In CVPR, 2022. 1

[17] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman
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