
Feature4X: Bridging Any Monocular Video to 4D Agentic AI
with Versatile Gaussian Feature Fields

Supplementary Material

This supplement is organized as follows:
• Section A contains more details of 4D reconstruction;
• Section B contains implementation details;
• Section C contains the details of foundation models’ fea-

tures extraction and downstream task inference;
• Section D contains the algorithmic details of language-

guided 4D editing with LLM;
• Section E contains more baseline comparisons;
• Section F contains ablation studies of our method.

A. Details of 4D Reconstruction
Our video-to-4D feature field reconstruction pipeline is
based upon MoSca [2], a state-of-the-art monocular video-
based dynamic 3D scene reconstruction method. We aug-
ment their representation with our proposed unified feature
field and follow their training procedure with added feature
rendering loss to the original optimization objective. Here
we give a brief overview of the training pipeline. Please
refer to MoSca [2] for more details.

A.1. Dynamic Scene Representation
Given a monocular input video, the underlying dynamic
3D scene is modeled as the composition of a static 3D
background, represented with a set of static 3D Gaussians
{Gstatic}, and a dynamic 3D foreground, represented by a set
of 3D Gaussians {G} that deform over time.

The deformation of Gaussians {G} is modeled by a
structured representation named 4D Motion Scaffold. It is a
graph (V, E) where the nodes V are 3D motion trajectories
v(i) = [Q

(i)
1 , . . . ,Q

(i)
t],Q = [R, t] ∈ SE(3). Intuitively,

they describe the rigid transformations or 6DoF poses of
points through time. They also each have a control radius
attribute r(i), describing the range of influence.

Given two nodes, v(i),v(j), we define their distance as
the maximum distance of their translation component t over
all timesteps. Specifically, D(i, j) = maxτ ||t(i)τ − t

(j)
τ ||.

Intuitively, two nodes are close to each other only if they
are close at all timesteps. Based on distance metric D, we
construct a K-Nearest Neighbor (KNN) Graph (V, E), de-
scribing the mutual influence of nodes on each other.

The set of dynamic 3D Gaussians G can be thought of
as the union of 3D Gaussians from all timesteps. Each
Gaussian G ∈ G is originally spawned at a certain source
timestep τ , with position µ and rotation R. However, to
render the scene at target timestep τ ′, we fuse Gaussians
from other source timesteps as well. This helps with the
partiality of the single view observation at τ ′. To do so, we

need to compute the motion or the deformation of Gaussian
G from τ to τ ′, which we achieve by querying the Motion
Scaffold (V, E).

From a high level, we find the node trajectories closest
to G and use the interpolation of their deformation (given
by Qτ ′Q−1

τ) as the deformation of G. For computation
efficiency, in practice, we first identify the node trajectory
v(i∗) closest to g based on their positions at τ . Specifi-
cally, i∗ = argmini ||t(i)τ −µ||. We then use i∗’s K-Nearest
neighbors {v(i)}i∈E(i∗) as an approximation of G’s closest
nodes. We compute the interpolation weights {wi} as

wi = Normalizei∈E(i∗)

(
exp(−||µ− t

(i)
τ ||22

2r(i)
) + ∆wi

)
,

(1)
Intuitively, nodes with closer spatial positions and larger

control radius have more influence over G. ∆wi is a learn-
able offset jointly optimized with other model parameters,
allowing more flexibility.

The transformation of G from time τ to τ ′ is computed
as

Tτ→τ ′ = DQB({wi,Qτ ′Q−1
τ }) ∈ SE(3),

where DQB represents Dual Quaternion Blending that in-
terpolates SE(3) elements. We apply Tτ→τ ′ to the position
and rotation of G when rendering it at timestep τ ′.

A.2. Initialization from Lifted 2D Priors
We rely on 2D priors from pretrained foundation models
to initialize and constrain the system. The most important
priors include 1) per-frame monocular metric depths D for
rough geometry initialization; 2) long-term pixel trajecto-
ries T , where each trajectory describes a point’s pixel po-
sition at each frame, providing a rough motion initializa-
tion in 2D; and 3) per-frame epipolar error maps computed
from dense optical flow, separating static background and
dynamic foregrounds.

We assume known camera intrinsic and poses for the fol-
lowing and refer the readers to [2] for camera initialization
and optimization in case the cameras are unknown.

We first compute foreground-background masks from
epipolar error maps M. We initialize the static background
3D Gaussians by back-projecting points in the static back-
ground masks using depth estimations.

For the dynamic foreground, we lift 2D pixel trajecto-
ries to 3D space with monocular depth predictions and fil-
ter out dynamic ones based on epipolar error maps, then
sample a subset of them based on trajectory distance metric

1

D as the initial Motion Scaffold nodes. As these trajecto-
ries only contain 3D positions, we initialize the rotational
components R with identity matrices. We initialize the dy-
namic Gaussians by back-projecting points in the dynamic
foreground masks.

A.3. Optimization
We first optimize the static background 3D Gaussians fol-
lowing the standard 3D Gaussian Splatting optimization
procedures, using supervision from static regions of the in-
put video frames.

The dynamic foreground is optimized in two stages.
The first geometric optimization stage focuses on the
Motion Scaffolds and produces a reasonable deformation
field, based on which the second photometric/feature stage
spawns dynamic Gaussians and optimizes the final RGB
and feature rendering objectives. During geometric op-
timization, the Scaffold trajectories are optimized subject
to a set of physics-inspired losses: an as-rigid-as-possible
loss that encourages nearby nodes to deform in locally-rigid
ways, and smoothness losses on the velocity and accelera-
tion of points to encourage smooth motions. During pho-
tometric optimization, we deform the dynamic Gaussians
with Motion Scaffolds, combine them with the static Gaus-
sians, rasterize them into RGB images and feature maps,
and jointly optimize all parameters including Gaussian pa-
rameters and the Motion Scaffolds.

B. Implementation Details

Feature Decoder Configuration While training our uni-
fied latent feature field, the rendered feature map from a
camera view is passed through a decoder head to obtain the
final feature map for each feature type. Our decoder heads
are simple MLPs, which enlarge the input feature dimen-
sion by a factor of 2 at each layer. For example, our latent
feature dimension is 32 but the CLIP feature dimension is
512, so the decoder simply maps 32 to 64, 64 to 128, and fi-
nally 128 to 512. Between each linear layer in the decoder,
we use a ReLU activation function.

N-Dimensional Feature Map Rendering We utilize the
parallel N-dimensional Gaussian rasterizer from Feature
3DGS [13], which leverages a point-based α-blending ap-
proach to rasterize feature maps. This method ensures that
the rendered feature maps and RGB images are produced at
the same resolution. Before calculating the loss, we align
the size of the rendered feature map with the ground truth
feature map. For SAM2 [9] and CLIP-LSeg [3] features,
this is achieved using bilinear interpolation, while area re-
sampling is applied to InternVideo [11] features due to the
patchify mechanism used during feature extraction. More-
over, the parallel N-dimensional rasterizer is designed with

adaptability, enabling flexible adjustments to the various di-
mensions of our unified latent feature field.

Training Our model is trained end-to-end to jointly re-
construct the versatile Gaussian feature field and the ra-
diance field. We adopt the same training schedule as
MoSca [2]: 4000 iterations for static Gaussian optimization
and 5000 for dynamic one on the DAVIS dataset [8], and
8000 iterations for static and 5000 for dynamic Gaussian
optimization on the NVIDIA dataset [12].

C. Feature Extraction and Inference with
Foundation Models

SAM2 Feature We extract per-frame ground truth fea-
tures sequentially using the image encoder from SAM2 [9].
Specifically, each frame is processed by a Hiera [10] image
encoder, which is pre-trained with MAE [1], to produce a
feature map with a resolution of 64 × 64 and a feature di-
mension of 256. Consequently, the ground truth features for
the input video have a shape of T × 256 × 64 × 64, where
T denotes the number of frames.

Our promptable / promptless segmentation results are
obtained by feeding the rendered SAM2 feature map into
the SAM2 decoding architecture, which includes a mem-
ory attention module, a prompt encoder, and a mask de-
coder. These components interact with a memory encoder
and memory bank to retain and propagate segmentation in-
formation. For promptable segmentation, points, boxes,
or masks are input into the prompt encoder to define the
object’s extent in a frame. For promptless segmentation,
SAM2’s automatic mask generator produces segmentation
masks for a frame, which are then input into the prompt
encoder. Once segmentation is performed on any initial
frame, SAM2’s memory modules enable automatic track-
ing and propagation of masks across subsequent frames by
conditioning each frame’s features on past predictions.

CLIP-LSeg Feature For CLIP-LSeg, we utilize the CLIP
ViT-L/16 image encoder to generate ground truth per-pixel
feature maps and the ViT-L/16 text encoder for text feature
extraction. This encoder can automatically resize any input
image to generate a feature map with the longer side set to
480. We use square input images in our experiments so the
CLIP-LSeg image encoder produces ground truth features
with a resolution of 480 × 480 and a feature dimension of
512.

During inference for semantic segmentation, the ren-
dered features with shape (512, 480, 480) are reshaped into
(480 × 480, 512), referred to as the image feature. Mean-
while, the text feature extracted from the CLIP text encoder
has a shape of (C, 512), where C is the number of cate-
gories. A matrix multiplication is then performed between

2

SAM2 Feature Field CLIP Feature Field InternVideo Feature Field

4D Scene Versatile Gaussian Feature Field

Figure A. Feature Field Visualizations. We visualize our versatile Gaussian feature field along with its decoded SAM2, CLIP, and
InternVideo feature fields using PCA.

the image feature and the text feature to align pixel-level
features with text queries. The resulting features are fur-
ther processed using LSeg spatial regularization blocks to
generate the semantic segmentation masks.

InternVideo Feature Given an input video, internvideo
first resizes it to 224 × 224 resolution, then takes 14 × 14
as a patch, passing through a convolutional neural network
to get the initial feature map with 1408 channels. Then,
a pretrained class token input is concatenated to the initial
feature map and passed through a transformer encoder to get
the final feature map, which is in the shape of (T×16×16+
1) × 1408, where T is the number of frames. As the class
token represents the whole video class information and is
not dependent on individual pixels, we save and detach it
when distilling the 4D feature field.

During inference, we first concatenate the class token
back into the novel-view rendered InternVideo feature to
obtain the gathered feature. This gathered feature is then
directly input into a Video-LLM [4] to perform free-form
visual question answering (VQA). Since the feature map
can be rendered from any viewpoint of the 4D scene at high
speed, our approach enables a seamless connection between
the 4D scene and the AI agent (chatbot).

Feature Fields Visualization As shown in Fig. A, we
leverage Principal Component Analysis (PCA) from the
scikit-learn library [7] to visualize feature fields from global

novel views. We configure the PCA to use 3 components
corresponding to RGB channels and compute the PCA
mean by sampling every third element along the h × w
vectors. These vectors have feature dimensions of 32 (for
unified latents), 256 (for SAM2), 512 (for CLIP), and 1408
(for InternVideo). The feature map is then transformed us-
ing the calculated PCA components and mean. This pro-
cess involves centering the features using the PCA mean,
followed by projection onto the PCA components. The
transformed feature is subsequently normalized by remov-
ing outliers and scaling based on the minimum and maxi-
mum values, standardizing the feature values into a uniform
range suitable for visualization.

D. Details of LLM-powered 4D Editing

An overview of the editing pipeline is illustrated in Fig. B.
It begins with user inputs, such as “Make the dog’s color
look like Clifford,” which are processed by a GPT-4o model
to extract editable configurations (e.g., objects, operations,
targets, and thresholds). Each Gaussian xi is defined by
(fi, αi, ci), where fi ∈ R512 is the semantic feature, αi ∈ R
is the opacity, and ci ∈ R3 is the color. Guided by in-
put specified object categories (e.g., “dog”, “cow”), the
CLIP ViT-B/32 text encoder encodes the text into features
{t1, . . . , tC}, where ti ∈ R512 and C is the number of cat-
egories. The inner product between text and semantic fea-
tures, followed by a softmax, produces a semantic score ma-
trix scores ∈ RN×C .

3

CLIP text
encoder

3D CLIP featureText feature Opacity Color

 : number of Gaussians
: number of categories

Render
(-blending)

Rendered
image

High Level User Input Prompts
e.g. "Make the dog's color look like Clifford"

Edit Configurations
{objects, operation, targets, threshold}

target
e.g. "dog"

Final result
image

Bitwise
OR

else

 GPT-4o

GPT-4o
Quality Assessment

Best

Adjust Threshold

Fused GS at

Figure B. Overview of the editing framework. GPT-4o generates different editing configurations based on user prompts, selects target
regions via hybrid filtering, evaluates their outputs, and selects the best configuration.

To select Gaussians that corresponds to the editing, we
use a combination of two masking schemes derived from
the semantic scores. The first one is binary thresholding.
The query label l ∈ {1, 2, . . . , C} (or l ⊆ {1, 2, . . . , C}
if it is a list of categories) determines the corresponding
column of the score matrix scorel = [s1l, s2l, . . . , sNl]

⊤.
Indices i where sil ≥ th are selected (set to 1), while
the rest are excluded (set to 0). The selected indices de-
fine the target region, and unselected Gaussians are masked
out. The second masking scheme is determined by as-
signing each Gaussian to the category with the highest
score using argmax as shown in Fig. B, producing a cat-
egory vector categories = [c1, c2, . . . , cN]⊤, where ci =
argmax{si1, . . . , siC}. Gaussians are selected if their cate-
gory aligns with the query label l, and others are excluded.
Their resulting masks are combined using a bitwise OR op-
eration. This method balances flexibility and precision, en-
abling more robust selection.

To optimize editing parameters, GPT-4o generates mul-
tiple candidate configurations with varying thresholds or

transformations. Each candidate is used to execute an edit-
ing operation, and the resulting edited images are rendered.
GPT-4o then evaluates these outputs and selects the best
configuration, which is subsequently applied across the en-
tire video to ensure consistent and high-quality results.

E. Baseline Comparisons

Segment Anything (SAM2) In the main paper, we high-
lighted that our SAM2 inference implementation from the
rendered unified latent feature map only needs to interact
with the SAM2 decoding architecture. This is an improve-
ment over the naive approach, which renders the RGB im-
ages (ordinary novel view synthesis like MoSca [2]) first
and then processes it through the entire SAM2 encoder-
decoder pipeline.

We quantitatively evaluate our approach (denoted as Fea-
ture) against the naive baseline (rendered novel view RGB
+ SAM2, denoted as RGB) on two datasets (Nvidia [5] and
Nerfies [6]) in Tab. A. A point prompt is randomly selected
on the dynamic object in the first frame of the ground-truth

4

NVIDIA Exp1 Exp2 Exp3 Mean↑ Time (s)↓
RGB 0.656 0.246 0.467 0.456 1.83
Feature 0.761 0.728 0.727 0.739 1.01

Nerfies Exp1 Exp2 Exp3 Mean↑ Time (s)↓
RGB 0.484 0.536 0.538 0.519 9.10
Feature 0.560 0.662 0.561 0.594 3.10

Table A. SAM2 Quantitative Results (mIoU) on NVIDIA and Nerfies Datasets.

Scene Method PSNR↑ SSIM↑ LPIPS↓ accuracy↑ mIoU↑ Static Model Size (MB) Dynamic Model Size (MB) Size (MB)

Jumping MoSca [2] 24.558 0.792 0.092 - - 29.08 29.70 58.78
Jumping MoSca + Feature 3DGS [13] 24.516 0.793 0.092 0.840 0.483 271.30 212.58 483.88
Jumping Ours (single CLIP head) 24.633 0.795 0.090 0.836 0.495 44.15 30.51 74.66
Jumping Ours (full model) 24.616 0.793 0.090 0.831 0.483 44.09 30.84 74.93

Skating MoSca [2] 31.478 0.926 0.059 - - 32.49 4.90 37.39
Skating MoSca + Feature 3DGS [13] 31.568 0.927 0.059 0.835 0.446 302.50 35.40 337.90
Skating Ours (single CLIP head) 31.572 0.927 0.059 0.838 0.450 49.32 4.90 54.22
Skating Ours (full model) 31.666 0.926 0.059 0.819 0.418 47.52 5.60 53.12

Truck MoSca [2] 26.688 0.824 0.115 - - 38.31 11.84 50.15
Truck MoSca + Feature 3DGS [13] 26.619 0.824 0.115 0.973 0.880 353.97 90.18 444.15
Truck Ours (single CLIP head) 26.630 0.820 0.122 0.971 0.878 58.35 12.27 70.62
Truck Ours (full model) 26.610 0.822 0.117 0.969 0.868 58.16 13.51 71.67

Umbrella MoSca [2] 23.355 0.706 0.185 - - 71.29 11.42 82.71
Umbrella MoSca + Feature 3DGS [13] 23.362 0.708 0.176 0.875 0.556 657.96 75.12 733.08
Umbrella Ours (single CLIP head) 23.433 0.707 0.185 0.869 0.559 107.87 11.28 119.15
Umbrella Ours (full model) 23.392 0.708 0.180 0.880 0.565 107.58 11.50 119.08

Balloon1 MoSca [2] 22.666 0.760 0.117 - - 56.88 18.59 75.47
Balloon1 MoSca + Feature 3DGS [13] 22.687 0.762 0.115 0.901 0.377 525.09 129.88 654.97
Balloon1 Ours (single CLIP head) 22.668 0.760 0.118 0.905 0.435 85.95 18.84 104.79
Balloon1 Ours (full model) 22.691 0.759 0.117 0.903 0.446 85.72 19.90 105.62

Balloon2 MoSca [2] 26.827 0.850 0.082 - - 51.82 15.22 67.04
Balloon2 MoSca + Feature 3DGS [13] 27.018 0.854 0.080 0.819 0.350 475.71 108.96 584.67
Balloon2 Ours (single CLIP head) 26.904 0.851 0.081 0.821 0.321 78.22 15.18 93.40
Balloon2 Ours (full model) 26.871 0.853 0.078 0.813 0.319 77.77 15.36 93.13

Playground MoSca [2] 20.591 0.777 0.130 - - 92.74 9.80 102.54
Playground MoSca + Feature 3DGS [13] 20.569 0.776 0.124 0.922 0.447 857.32 61.38 918.70
Playground Ours (single CLIP head) 20.463 0.775 0.130 0.922 0.430 141.02 9.20 150.22
Playground Ours (full model) 20.536 0.775 0.130 0.913 0.419 140.44 10.21 150.65

Mean MoSca [2] 25.166 0.805 0.111 - - 53.230 14.496 67.726
Mean MoSca + Feature 3DGS [13] 25.191 0.806 0.109 0.881 0.506 491.979 101.929 593.907
Mean Ours (single CLIP head) 25.186 0.805 0.112 0.880 0.510 80.697 14.597 95.294
Mean Ours (full model) 25.197 0.805 0.110 0.876 0.503 80.183 15.274 95.457

Table B. Detailed Performance of 7 scenes from the NVIDIA Dataset.

novel view video, and SAM2 is used to generate per-frame
ground-truth masks. We evaluate mIoU across the entire
dataset and repeat the experiments three times (Exp1-3) to
assess generalizability. Our approach outperforms the base-
line, which, though yielding smoother masks, lacks robust-
ness. We observe that artifacts in RGB rendering can mis-
lead SAM2 during encoding, causing ambiguity and highly
inaccurate segmentation. In contrast, our feature space in-
ference mitigates these issues, enhancing robustness and in-
creasing speed.

Semantic Segmentation (CLIP-Lseg) In main paper
Tab. 1, we provide the average performance metrics of our
method and the comparison baselines across the 7 scenes of

NVIDIA dataset. Here in Tab. B, we present the detailed
performance metrics on each scene. We can conclude that
our full model with a versatile feature field is not only fast
and compact but also on par with any other task-specific fea-
ture field distillation methods. Additionally, Fig. C presents
the qualitative results of semantic segmentation on “Jump-
ing” scene using our full model, demonstrating the reliabil-
ity of our approach.

We provide additional quantitative results on the Nerfies
dataset [6] in Tab. C to evaluate our method’s generalization
capability. While we do not claim improving downstream
task performance as a contribution, our method surpasses
the naive baseline (novel view rendered per-frame RGB +
LSeg) on this dataset while achieving 7.7× faster inference.

5

(b)

Rendered novel view RGB

(a)

GT semantic masks

(e)

Semantic masks from rendered feature mapRendered CLIP feature map

(f)

Rendered training view RGB

GT semantic masks

Semantic masks from rendered feature mapRendered CLIP feature map

(c)

(d)

Figure C. CLIP semantic segmentation quality comparison. We compare the CLIP semantic segmentation quality between ground-truth
(inference from RGB) and our implementation (inference from feature map) for both training and novel views.

F. Ablation Studies

In all our experiments, we set the default dimension of the
unified latent feature to 32, striking a balance between speed
and quality. In this section, we present an ablation study to
explore the impact of varying the feature dimensions. In

Fig. E and Fig. F we compare the training and rendering
time for different dimensions of our unified latent feature.
Notably, a dimension of 32 marks the threshold where fur-
ther increases in dimensions lead to a significant increase in
training and rendering times. This makes larger dimensions
impractical for our use case.

6

Segment Anything (SAM2) In Fig. D we compare and
contrast the SAM2 inference experiment results derived
from different dimensions unified latent feature maps (8,
16, 32, 64, 128, 256, 512) to justify our choice of 32 dimen-
sions. For dimensions higher than 32, we can see that the
segmentation masks are of poor quality and cannot be accu-
rately propagated through the video frames. For feature di-
mension 8, we see that while the segmentation mask tracks
our intended object, it also erroneously includes much of the
empty background. The segmentation masks for the 16 di-
mension experiment track accurately but do not fully cover
the intended object at t = 55 and t = 85. Overall, the seg-
mentation masks produced from 32 dimensional unified la-
tent feature maps are the best in terms of segmentation qual-
ity and tracking accuracy. Given the relatively fast training
and rendering, 32 should be the optimal dimension for our
unified latent feature field in regards to SAM2 segmentation
results.

Semantic Segmentation (CLIP-LSeg) We study the ef-
fect of different latent scene feature dimensions on the
“Jumping” scene of NVIDIA. In Tab. D (with plots Fig. G
and Fig. H), we report the training time as well as the per-
formance of the semantic segmentation. The results show
that compared to 512, which is the original dimension of
CLIP-LSeg feature, our method with dim = 32 achieves
comparable performance on mIoU and accuracy, while be-
ing 5.23× faster on training. We also report the image qual-
ity metrics in Tab. E (with plots Fig. I and Fig. J) which
shows that our feature field distillation method does not af-
fect the image quality.

7

Nerfies Scene mIoU ↑ Accuracy ↑ Time (s) ↓
RGB Feature RGB Feature RGB Feature

Broom 0.193 0.333 0.321 0.610 207.59 30.22
Curls 0.514 0.443 0.877 0.872 155.25 20.82
Tail 0.261 0.338 0.652 0.860 389.89 46.43
Toby-sit 0.504 0.470 0.757 0.737 355.82 45.96

Mean 0.368 0.396 0.652 0.770 277.14 35.86
Table C. Semantic Segmentation Quantitative Results on Nerfies Dataset.

Dimension 8 16 32 64 128 256 512

Training Time (h) 2.30 2.48 2.83 3.45 4.22 8.75 14.80
Rendering Time (s) 4.818 4.898 4.872 4.967 5.815 10.167 16.313
mIoU↑ 0.468 0.483 0.482 0.485 0.471 0.494 0.497
Accuracy↑ 0.827 0.831 0.830 0.834 0.832 0.837 0.841

Table D. Evaluation of Semantic Segmentation Performance On NVIDIA Jumping Scene Across Different Dimensions. This table
presents the Time, mIoU, and Accuracy corresponding to each dimension level.

Dimension 8 16 32 64 128 256 512 MoSca

PSNR↑ 24.466 24.595 24.616 24.623 24.585 24.629 24.491 24.558
SSIM↑ 0.788 0.793 0.793 0.790 0.792 0.796 0.789 0.792
LPIPS↓ 0.092 0.091 0.090 0.091 0.091 0.090 0.095 0.092

Table E. Evaluation of Image Quality Metrics On NVIDIA Jumping Scene Across Different Dimensions. This table presents the
PSNR, SSIM, and LPIPS values corresponding to each dimension level.

8

U
ni

fie
d

La
te

nt
 F

ea
tu

re
 F

ie
ld

 D
im

en
si

on

mask assignment mask propagation

Figure D. SAM2 segmentation quality comparison for different dimensions of unified latent feature maps Best performing SAM2
segmentation is derived from the 32-dimensional unified latent feature map.

9

Figure E. Training Time vs Unified Latent Feature Dimensions
We show the training time required with different dimensions of
unified latent feature map.

Figure F. Rendering Time vs Unified Latent Feature Dimen-
sions We show the rendering time required for different dimen-
sions of unified latent feature map.

Figure G. Training Time vs CLIP Feature Dimensions We show
the training time required with different dimensions of rendered
CLIP features.

Figure H. Rendering Time vs CLIP Feature Dimensions We
show the rendering time required for different dimensions of ren-
dered CLIP features.

Figure I. mIoU vs CLIP Feature Dimensions We show mIoU
with respect to different rendered CLIP feature dimensions.

Figure J. Accuracy vs CLIP Feature Dimensions We show accu-
racy with respect to different rendered CLIP feature dimensions.

10

References
[1] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr

Dollár, and Ross Girshick. Masked autoencoders are scal-
able vision learners. arXiv preprint arXiv:2111.06377, 2022.
https://arxiv.org/abs/2111.06377. 2

[2] Jiahui Lei, Yijia Weng, Adam Harley, Leonidas Guibas,
and Kostas Daniilidis. Mosca: Dynamic gaussian fusion
from casual videos via 4d motion scaffolds. arXiv preprint
arXiv:2405.17421, 2024. 1, 2, 4, 5

[3] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen
Koltun, and René Ranftl. Language-driven semantic seg-
mentation. arXiv preprint arXiv:2201.03546, 2022. 2

[4] KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai
Wang, Ping Luo, Yali Wang, Limin Wang, and Yu Qiao.
Videochat: Chat-centric video understanding. arXiv preprint
arXiv:2305.06355, 2023. 3

[5] Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu
Tseng, Ayush Saraf, Changil Kim, Yung-Yu Chuang, Jo-
hannes Kopf, and Jia-Bin Huang. Robust dynamic radiance
fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2023. 4

[6] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5865–5874, 2021. 4, 5

[7] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
et al. Scikit-learn: Machine learning in python. the Journal
of machine Learning research, 12:2825–2830, 2011. 3

[8] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc
Van Gool, Markus Gross, and Alexander Sorkine-Hornung.
A benchmark dataset and evaluation methodology for video
object segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 724–732,
2016. 2

[9] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman
Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2:
Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024. 2

[10] Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei,
Haoqi Fan, Po-Yao Huang, Vaibhav Aggarwal, Arkabandhu
Chowdhury, Omid Poursaeed, Judy Hoffman, Jitendra Ma-
lik, Yanghao Li, and Christoph Feichtenhofer. Hiera:
A hierarchical vision transformer without the bells-and-
whistles. arXiv preprint arXiv:2306.00989, 2023. https:
//arxiv.org/abs/2306.00989. 2

[11] Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He,
Chenting Wang, Guo Chen, Baoqi Pei, Rongkun Zheng, Ji-
lan Xu, Zun Wang, et al. Internvideo2: Scaling video foun-
dation models for multimodal video understanding. arXiv
preprint arXiv:2403.15377, 2024. 2

[12] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park,
and Jan Kautz. Novel view synthesis of dynamic scenes with

globally coherent depths from a monocular camera. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5336–5345, 2020. 2

[13] Shijie Zhou, Haoran Chang, Sicheng Jiang, Zhiwen Fan, Ze-
hao Zhu, Dejia Xu, Pradyumna Chari, Suya You, Zhangyang
Wang, and Achuta Kadambi. Feature 3dgs: Supercharging
3d gaussian splatting to enable distilled feature fields. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 21676–21685, 2024. 2, 5

11

https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2306.00989
https://arxiv.org/abs/2306.00989

	Details of 4D Reconstruction
	Dynamic Scene Representation
	Initialization from Lifted 2D Priors
	Optimization

	Implementation Details
	Feature Extraction and Inference with Foundation Models
	Details of LLM-powered 4D Editing
	Baseline Comparisons
	Ablation Studies

