
Ferret: An Efficient Online Continual Learning Framework under Varying
Memory Constraints

Supplementary Material

!! !!"# !!"$

"%!
!!"& !!"' !!"(

#%!
"%!"#

An Iteration

Time
Forward Backward

!!") !!"* !!"+ !!", !!"#-

#%!"#
"%!"$

#%!"$

								

Dropped

(a) Online continual learning

!! !!"# !!"$

"%!

!!"& !!"' !!"(

#%!

	 	 	 	 	 	 	 	

%!"(

"%!"#

Time

%!

An Iteration

!!") !!"* !!"+ !!", !!"#-	 	 	 	 	 	 	 	

%!"#-

#%!"#

					

Dropped

					

Delayed

(b) Mini-batch online continual learning

Figure 8. (a) A typical online continual learning framework that
trains the model as soon as the data arrives. (b) A mini-batch of
data is processed for each iteration, reducing dropped data but in-
troducing delayed data.

8. Additional Related Work

Online Continual Learning: OCL is crucial in ML for
adapting to continuously evolving data, primarily address-
ing catastrophic forgetting [2, 3, 12, 47] and concept drift in
data streams under resource constraints [11, 26, 48]. Some
methods [29, 70] reduce latency by immediately processing
new data, as Fig. 8a illustrated, but this often discards valu-
able information and hampers comprehensive learning. To
preserve data, several approaches [46, 54, 81, 88, 90] buffer
it for later batch-training, as Fig. 8b illustrated, which, while
increasing latency and computational costs, especially with
complex algorithms like coreset selection, seeks to avoid
data skipping.

Distributed and parallel ML frameworks: Dis-
tributed and parallel ML frameworks are essential for pro-
cessing large data sets with minimal latency [55, 64, 67,
72, 73, 89]. For instance, Pytorch [64], Megatron-LM [73],
and DeepSpeed [67] use GPipe [38] and PipeDream-
Flush [59] to enable concurrent processing across
model segments, enhancing real-time data management.
Horovod [72] streamlines synchronized distributed train-
ing across TensorFlow [1], Keras [15], and PyTorch, op-
timizing ML training on vast computing clusters. Con-
versely, Ray [55] supports large-scale asynchronous dis-
tributed training with custom gradient compensation algo-
rithms [85].

! − #

TimeForward Backward Update

! !! + #
∇ℒ($!"#, &!"#)

&! = &!"$ − *∇ℒ($!"#"$, &!"#"$)
……

&!%#

∇ℒ $!, &! is delayed for + iterations

Apply delayed gradients

Figure 9. Due to asynchronous model updating, →L(Dt, ωt) is
obtained when ωt has been updated to ωt+ω

Parallelization optimizations: Several strategies be-
yond data and model parallelism have been developed to op-
timize parallelization in ML. Pipeline parallelism has seen
notable advancements with the introduction of strategies
like DAPPLE [24], Pipedream [58], Zero-Bubble [66], and
Hanayo [49], significantly boosting training efficiency. Ad-
ditionally, during asynchronous parallelization, the model
will be inevitably updated by stale gradients, as Fig. 9 il-
lustrated, leading to low data management efficiency and
performance degradation. Strategies to counteract stale gra-
dients in parallel processing include reducing step sizes for
outdated gradients [7, 33, 41] or using higher-order infor-
mation [85, 87].

9. Notations
Let us assume the model ω in the hypothesis space ! has
L̂ layers, with t̂fi , t̂bi , |ŵi|, |âi| denoting the time con-
sumed for the forward and backward pass, the size of the
model parameters and the output activations of the i-th layer
of the model, respectively. The model is then partitioned
into P = |L| → 1 pipeline stages, where L represents the
model partition scheme. The j-th stage encompasses the
Lj-th to the (Lj+1 → 1)-th layer of the model, with the
size of model parameters |wj | =

∑Lj+1→1
i=Lj

|ŵi| and the

size of activations |aj | =
∑Lj+1→1

i=Lj
|âi|. Thus, the time

consumed for the forward and backward pass of a stage
in pipeline parallelism is tf = maxj{

∑Lj+1→1
i=Lj

|t̂fi |} and

tb = maxj{
∑Lj+1→1

i=Lj
|t̂bi |}, respectively. Moreover, af-

ter partitioning, a pipeline configuration C is determined
based on the interval between data arrivals td that contains
N worker configurations, where the n-th worker configura-
tion specifies the processing delay cdn, the activation recom-
putation indicator crn, and the gradient accumulation and
back-propagation omission steps of its j-th stage can,j , con,j ,
respectively.

Table 5. The glossary of notations

Notation Implication
ω ↑ ! Model parameters
L̂ Number of layers in ω
t̂fi Time consumed for the i-th layer’s forward pass
|ŵi| Number of parameters in the i-th layer’s
|âi| Number of parameters for the i-th layer’s output

activations
L Partition scheme, the j-th partition has

[Lj , Lj+1) layers
P Number of pipeline stages |L|→ 1
|wj | Number of parameters in the j-th stage∑Lj+1→1

i=Lj
|ŵi|

|aj | Number of activations in the j-th stage∑Lj+1→1
i=Lj

|âi|

tf Time consumed for the forward pass of a stage
maxj{

∑Lj+1→1
i=Lj

|t̂fi |}

tb Time consumed for the backward pass of a stage
maxj{

∑Lj+1→1
i=Lj

|t̂bi |}

td Interval between data arrivals
C Pipeline configuration
cdn Processing delay of the n-th worker
crn Actication recomputation indicator of the n-th

worker
can,j Number of gradient accumulation steps of the

j-th stage in the n-th worker
con,j Number of back-propagation omission steps of

the j-th stage in the n-th worker
Dt Data arrived at timestamp t
VDt Data value of Dt

R
T
A Adaptation rate of a OCL framework A for t ↑

[0, T]
MA Memory footprint of A
oaccA(t) Online accuracy of A at timestamp t
taccA(t) Test accuracy of A at timestamp t
agmB(A, t) Online Accuracy Gain per unit of Memory of A

over B at timestamp t
tagmB(A, t) Test Accuracy Gain per unit of Memory of A

over B at timestamp t

10. Adaptation Rate and Memory Reduction
for S1-S4

In Sec. 5.2.1, T1-T4 are progressively employed to reduce
R

T
F and MF .
S1. Deploy T1 for all workers: By setting crn = 1 for

all workers, the data processing time increases. Specifically,
for the n-th worker, setting crn = 1 will respectively reduce
R

T
F and MF by:

!RT
F =

P→1∑

i=0

|wi|∑P→1
j=0 (|wj |)

1
can,i

can,i→1∑

j=0

(Bi,j ↑ Ci,j),

where Bi,j =
e→c((2P+2j→i)tf+(P→i+j)tb)VD

LCM({con,k + 1|k ↓ [i, P ↑ 1]})(2tf + tb)
,

Ci,j =
e→c((P+j)tf+(P→i+j)tb)VD

LCM({con,k + 1|k ↓ [i, P ↑ 1]})(tf + tb)
,

!MF = ↑
P→1∑

i=0

(1 + ↔P ↑ i↑ 1
can,i

↗ ↑ con,i)

Li+1→1∑

l=Li+1

|âl|. (19)

S2. Deploy T2 for the j-th stage in the n-th
worker: If con,j = 0, increasing can,j by ”can,j =

↓
P→j→1

↑(P→j→1)/can,j↓→1↔→ can,j will lead to a reduced frequency
of model parameter updates. Here, the value of ”can,j is
determined to prevent ”can,j↔can,j+1MF = 0 due to the
ceiling function. Consequently, RT

F and MF will be re-
spectively decreased by:

!RT
F =

|wj |∑P→1
k=0 (|wk|)

(

∑can,j+!can,j→1

k=can,j
Aj,k

can,j +!can,j

↑
!can,j

∑can,j→1

k=0 Aj,k

(can,j +!can,j)c
a
n,j

),

!MF = ↑(|wj |+ |aj |↑ crn

Lj+1→1∑

l=Lj+1

|âl|). (20)

S3. Deploy T3 For the j-th stage in the n-th worker:
If ”can,j = +↗, setting can,j = 1 and con,j = P →1→ j will
completely eliminate the need for the j-th stage in the n-th
worker to store additional model parameters by bypassing
any backward pass that requires previous model parameters.
Consequently, RT

F and MF will be respectively reduced
by:

!RT
F =

P→1→j∑

i=0

|wi|∑P→1
k=0 (|wj |)

∑can,i→1

j=0 (Ei,j ↑Ai,j)

can,i

,where Ei,j =

e→c((P+j)tf+(P→i+j)tb+crn(P→i+j)tf)VD

LCM(LCM({con,k + 1|k ↓ [i, P ↑ 1]}), P ↑ j)(tf + tb + crntf)
,

!MF = ↑↔P ↑ j ↑ 1
can,j

↗(|wj |+ |aj |↑ crn

Lj+1→1∑

l=Lj+1

|âl|). (21)

S4. Deploy T4 for the n-th worker: If con,j ↘= 0 for all
j ↑ [0, p→ 1), shutting down the n-th worker will lead to a
respective decrease in R

T
F and MF by:

!RT
F = ↑

P→1∑

i=0

|wi|∑P→1
j=0 (|wj |)

1
can,i

can,i→1∑

j=0

Ai,j ,

where Ai,j =
e→c((P+j)tf+(P→i+j)tb+crn(P→i+j)tf)VD

LCM({con,k + 1|k ↓ [i, P ↑ 1]})(tf + tb + crntf)
,

!MF = ↑
P→1∑

i=0

(1 + ↔P ↑ i↑ 1
can,i

↗ ↑ con,i)(|wi|+ |ai|↑ crn

Li+1→1∑

l=Li+1

|âl|).

(22)

11. Algorithm Details
Algorithm 1 initially updates ε for lower approximation
errors (Line 3-7). Then, the algorithm iteratively reduces
the staleness of gradients step by step, given the hyper-
parameter ε (Line 8-9). Afterward, the model parame-

Algorithm 1: Iterative Gradients Compensation
with ε

Input: ≃L(Dt→1; ωt→1); ωt→1, ωt, . . . , ωt+ω→1; ϑ; ϖ
and ϖε; ε0;

Output: ωt+ω ;
1 Function compensate (≃L(Dt→1; ωt→1), ωt→1, ωt,

. . ., ωt+ω→1)
// initialization

2 ε = ε0; vr = va = 0
3 if ϖε > 0 then

// update ε
4 ”vr = (1→ ϑ)(≃L(Dt→1; ωt→1)→ vr)
5 ε = ε→ ϖε≃ε||”vr → εva||2

6 vr = ϑvr + (1→ ϑ)≃L(Dt→1; ωt→1)
7 va = ϑva + (1→ ϑ)(≃L(Dt→1; ωt→1)⇐

≃L(Dt→1; ωt→1)⇐ (ωt → ωt→1))
// iterative approximation

8 forall i in 0, ..., ϱ → 1 do
9 ≃L(Dt→1; ωt+i) =

AI(≃L(Dt→1; ωt+i→1), ωt+i, ωt+i→1)

// model update
10 ωt+k = ωt+ω→1

→ ϖ≃L(Dt→1; ωt+ω→1)
11 return ωt+ω

ter ωt+ω→1 is updated by the delay-compensated gradient
≃L(Dt→1; ωt+ω→1) using gradient descent algorithm (Line
10).

Algorithm 2 begins by initializing N , cdn, crn, can,j and
con,j using the given parameters P , td, tf , cr and tb (Lines 2-
3). Then, the initial RT

F and MF are computed using Eq. 4
(Line 4). The algorithm then repeatedly evaluate ”pMF

and ”pR
T
F based on the aforementioned deployments {S2,

S3, S4}, applying the one that maximizes ”pMF /”pR
T
F

until MF ⇒ M (Lines 5-10). Finally, S1 is evaluated sep-
arately in Lines 13-14 since it is applied to all workers and
impacts tb and N .

Algorithm 3 starts by listing all possible tc for a stage,
where profile(·) measures the number of layers and their
respective statistics. (Line 3-8). For each tc, a model parti-
tion scheme L is then constructed (Line 11-16). Finally, the
optimal C and R under the formed L are retrieved using the
search(·) in Alg. 2 (Line 17). By comparing R of different
L, L↗ and C↗ can be obtained (Line 18-19).

12. Implementation Details
Datasets: To align with our computational resources, im-
ages in Tiny-ImageNet [45] and CORe50 [50] are resized to
32 ⇑ 32, while images in CLEAR10 and CLEAR100 [48]
are resized to 224 ⇑ 224. Additionally, split datasets (i.e.,
Split-MNIST, Split-CIFAR10, etc.) are partitioned into 5

Algorithm 2: Iterative Configuration Search
Input: td; tf ; tb; L; M ;
Output: C = {crn, c

d
n, c

a
n,j , c

o
n,j}; RT

F ;
1 Function itersearch (td, tf + tb, cr, L, M)

// initialization
2 N = ↓(tf + tb + crtf)/td↔
3 cdn = n; crn = cr; can,j = 1; con,j = 0

// iterative search
4 Calculate R

T
F and MF

5 while MF > M do
6 forall n in 0, . . . , N → 1 do
7 forall p in all {S2, S3, S4} do
8 Calculate ”pMF /”pR

T
F

9 p↗ = argmaxp(”pMF /”pR
T
F)

10 Update crn, cdn, can,j , con,j ,RT
F ,MF based on

p↗

11 return C = {crn, c
d
n, c

a
n,j , c

o
n,j},R

T
F

12 Function search (td, tf + tb, L, M)
13 C0,R0 = itersearch(td, tf + tb, 0, L,M)
14 C1,R1 = itersearch(td, tf + tb, 1, L,M)
15 return Ci,Ri where i = argmaxi{Ri}

tasks to simulate a class-incremental setting [9, 20, 46].
CORe50-iid is a shuffled version of the CORe50 dataset.

The rationale behind our evaluation metrics: To com-
prehensively evaluate both performance and memory foot-
print of given OCL frameworks A and B, it is natural to
consider the ratio of their differences:

metricc =
metricA →metricB
log(MA)→ log(MB)

, (23)

where metricc is the comprehensive metric that shows
the performance improvement per memory increment, and
metricA and metricB are the arbitrary performance met-
rics of A and B, respectively. It is important to note that the
logarithm function is employed to account for the dimin-
ishing returns associated with memory increments. Then,
Eq. 23 can be further represented as:

metricc ⇓
metricA →metricB

log(MA/MB)
(24)

⇓
exp(metricA →metricB)

MA/MB
(25)

⇓ log(
exp(metricA →metricB)

MA/MB
), (26)

which is the same form as Eq. 17 and Eq. 18.
Hyper-parameters: All experiments are conducted on a

server with 32 Intel(R) Xeon(R) CPU E5-2620 v42.10GHz

Algorithm 3: Brute-force planning
Input: td; ω; M ; profile(·); search(·);
Output: L↗ and C↗ that maximizes Eq. 13;

1 Function plan (td, ω, M)
2 L̂, t̂fi , t̂

b
i , |ŵi|, |âi| = profile(ω); S = ⊋

// get all consumed time for a
stage

3 forall k in 0, . . . , L̂→ 1 do
4 forall i in 0, . . . , L̂→ 1→ k do
5 tc =

∑i+k
j=i (t̂

f
j + t̂fj)

6 if (tc < maxj↘[0,L→1](t̂
f
j + t̂bj) then

7 S = S ⇔ tc

8 S = sorted(S)
// Search for the optimal scheme

9 L↗ = []; tc↗ = R
↗ = 0;C↗ = ⊋

10 forall tc in S do
11 L = [0]; tsum = 0

12 forall i in 0, . . . , L̂→ 1 do
13 tsum = tsum + t̂fi + t̂bi
14 if tsum > tc then
15 L.append(i); tsum = t̂fi + t̂bi

16 L.append(L̂)
17 C,R = search(td, tc, L,M)
18 if R > R

↗ then
19 R

↗ = R; tc↗ = tc;L↗ = L;C↗ = C;

20 return L↗, C↗

CPUs, 8 NVIDIA TITAN Xp GPUs and 64 GB memory.
The learning rate is 1e-3, the interval between data arrivals
is set to maximal time consumed for the forward pass of
a layer in the model, i.e., td = maxi{t̂

f
i }, and the replay

buffer size for all OCL algorithms is 5e3. For Iter-Fisher,
ε = 0.2, µ = 2e-6, while for the other compensation algo-
rithms, ε is manually tuned for each dataset. Additionally,
L↗ and C↗ are pre-determined and shared for all pipeline
parallelism strategies using tuned c and M for each dataset.

13. Additional Evaluation Results
In this section, we present additional results for the pro-
posed Ferret and the baseline methods, employing the stan-
dard Online Accuracy and Test Accuracy metrics. These
metrics are widely recognized as the standard measure in
the field of OCL. Notably, The following results do not ac-
count for the memory footprint during training, which is the
main reason why they are not included in the main paper.

Table 7 shows the online accuracy of different OCL
frameworks on various datasets. Thanks to pipeline par-

Table 6. Statistics of raw datasets.

Dataset # Stream Data # Features # Classes

MNIST [22] 60,000 784 10
FMNIST [79] 60,000 784 10
EMNIST [16] 697,932 784 62
CIFAR10 [43] 50,000 3,072 10
CIFAR100 [43] 50,000 3,072 100
SVHN [60] 604,388 3,072 10
Tiny-ImageNet [45] 100,000 12,288 200
CORe50 [50] 119,894 49,152 50
CORe50-iid 119,894 49,152 50
Split-MNIST 60,000 784 10
Split-FMNIST 60,000 784 10
Split-CIFAR10 50,000 3,072 10
Split-CIFAR100 50,000 3,072 100
Split-SVHN 73,257 3,072 10
Split-Tiny-ImageNet 100,000 12,288 200
Covertype [8] 464,809 54 7
CLEAR10 [48] 330,000 562,500 11
CLEAR100 [48] 1,209,197 562,500 101

allelism, the model parameters can be updated more fre-
quently, leading to a higher online accuracy even for
FerretM→. FerretM+, which has the highest memory foot-
print, achieves the best online accuracy on all datasets. The
results demonstrate that Ferret can effectively utilize mem-
ory resources to improve the online accuracy of the model.

Table 8 shows the online accuracy and test ac-
curacy of different integrated OCL algorithms on the
CORe50/ConvNet dataset. From the table, we can see that
both ER, MIR, LWF, and MAS can effectively mitigate
catastrophic forgetting, achieving better test accuracy while
maintaining comparable online accuracy. When applying
these algorithms to different OCL frameworks, FerretM+

consistently outperforms the other OCL frameworks by a
large margin, demonstrating the effectiveness of Ferret in
leveraging memory resources to improve the performance
of integrated OCL algorithms.

Fig. 10 and Fig. 11 expand results in Fig. 4 and Fig. 6
to show the memory consumption of different stream learn-
ing algorithms and the relationship between online accuracy
and memory consumption of different pipeline parallelism
strategies, respectively.

14. Limitations
To reduce the staleness of gradients, the proposed Ferret
utilizes Taylor series expansion to approximate the gradi-
ent at the current time step. This compensation introduces
an additional hyper-parameter ε. However, the optimal ε
may vary across different datasets and models, which may
require manual tuning. To automate this process, ε can be
optimized in real-time under the mild assumption that the
distributions of EkDk and EkDk+1 are similar. This as-

Table 7. Online Accuracy of different algorithms. ”M-”, ”M”, ”M+” refer to the ferret method with minimal, medium and maximal
memory footprint, respectively.

Setting Oracle 1-Skip Random-N Last-N Camel FerretM→ FerretM FerretM+

MNIST/MNISTNet 81.14±1.43 18.24±3.05 18.48±2.65 18.87±3.17 17.82±2.7 30.16±4.57 56.25±3.69 80.98±1.44

FMNIST/MNISTNet 65.94±0.64 21.39±2.71 21.9±1.66 22.02±1.57 21.22±2.12 34.76±2.89 51.19±1.72 65.78±0.66

EMNIST/MNISTNet 75.91±0.14 45.98±1.23 51.64±1.14 51.82±1.15 50.73±1 55.33±1.04 66.8±0.31 75.9±0.15

Cifar10/ConvNet 51.84±0.04 27.5±0.19 40.09±0.26 40.24±0.21 40.06±0.11 34.25±0.56 42.46±0.18 51.69±0.36

Cifar100/ConvNet 14.56±0.03 2.49±0.01 5.81±0.16 5.92±0.13 5.75±0.17 5.66±0.08 9.15±0.06 14.89±0.12

SVHN/ConvNet 81.59±0.04 46.11±0.52 64.07±0.68 64.52±0.61 64.86±0.73 56.98±0.75 73.29±0.25 81.6±0.2

TinyImagenet/ConvNet 5.65±0.19 0.75±0.02 1.6±0.12 1.63±0.1 1.62±0.13 1.51±0.08 2.67±0.07 5.61±0.17

CORe50/ConvNet 81.59±0.12 21.69±1.01 51.25±0.54 51.59±0.66 48.81±0.74 42.05±0.97 63.68±0.56 80.46±0.22

CORe50-iid/ConvNet 63.8±0.34 19.49±6.82 27.74±6.39 34.34±0.67 33.14±1.24 27.11±1.09 44.89±0.66 63.23±0.34

SplitMNIST/MNISTNet 94.96±0.08 53.04±1.82 59.66±2.7 59.72±2.99 61.85±2.73 66.81±3.5 87.11±0.61 94.4±0.2

SplitFMNIST/MNISTNet 94.98±0.29 68.92±3.68 73.67±4.23 73.57±4.27 74.66±4.17 81.14±2.68 91.08±0.6 94.7±0.29

SplitCifar10/ConvNet 84.1±0.07 66.84±0.21 75.6±0.13 75.73±0.32 75.76±0.07 72.89±0.24 78.64±0.31 83.55±0.09

SplitCifar100/ConvNet 33.52±0.24 9.33±0.2 17.32±0.19 17.44±0.27 17.17±0.5 17.01±0.16 24.1±0.2 33.72±0.14

SplitSVHN/ConvNet 94.83±0.02 79.89±0.77 88.31±0.48 88.32±0.55 88.29±0.48 85.58±0.49 92.06±0.13 94.74±0.05

SplitTinyImagenet/ConvNet 5.72±0.27 0.8±0.06 1.59±0.13 1.67±0.1 1.55±0.06 1.53±0.08 2.9±0.07 5.66±0.2

CLEAR10/ResNet 96.4±0.02 72.52±0.15 91.42±0.17 91.63±0.13 66.71±24.22 78.02±0.02 90.96±0.03 96.32±0.04

CLEAR10/MobileNet 76.89±0.51 30.02±0.48 58.75±0.67 59.22±0.4 58.88±0.33 25.36±0.78 64.4±0.82 75.18±0.39

CLEAR100/ResNet 89.08±0.06 39.08±0.96 74.9±0.16 75.29±0.1 73.07±0.11 56.24±0.06 75.53±0.31 89.54±0.37

CLEAR100/MobileNet 61±2.49 6.85±0.12 29.48±0.69 30±0.45 28.48±0.25 8.69±0.25 43.81±0.97 60.29±1.44

Covertype/MLP 80.9±0.69 63.25±0.83 60.59±1.52 60.66±1.53 60.57±1.49 64.94±0.92 67.63±0.23 72.95±0.17

Table 8. Online Accuracy and Test Accuracy of different integrated OCL algorithms on CORe50/ConvNet. Camel has its dedicated
component to mitigate catastrophic forgetting and cannot be integrated with various OCL algorithm.

Metric Oracle 1-Skip Random-N Last-N Camel FerretM→ FerretM FerretM+

Vanilla oacc 81.59±0.12 21.69±1.01 51.25±0.54 51.59±0.66 48.81±0.74 42.05±0.97 63.68±0.56 80.46±0.22

tacc 15.68±0.72 10.24±0.82 14.35±1.08 14.11±0.42 15.28±0.39 12.02±0.36 15.07±0.68 15.83±0.9

ER [12] oacc 79.84±0.09 24.51±0.69 42.59±0.41 43.2±0.41 - 40.9±0.83 61.57±0.47 78.68±0.11

tacc 24.54±0.49 14.91±0.52 19.4±0.68 20.32±0.14 - 16.8±0.72 22.06±0.11 24.32±0.81

MIR [3] oacc 79.84±0.09 24.51±0.69 42.53±0.49 43.1±0.35 - 40.9±0.83 61.57±0.47 78.68±0.11

tacc 24.54±0.49 14.91±0.52 19.78±0.66 20±0.51 - 16.8±0.72 22.06±0.11 24.32±0.81

LWF [47] oacc 81.6±0.13 21.7±1.02 51.25±0.54 51.61±0.67 - 42.11±0.85 63.55±0.49 80.56±0.28

tacc 15.68±0.72 10.24±0.82 14.35±1.08 14.11±0.42 - 12±0.36 15.07±0.68 15.83±0.9

MAS [2] oacc 81.66±0.18 22.11±0.7 51.19±0.42 51.62±0.75 - 41.8±0.86 63.57±0.59 80.48±0.21

tacc 16.76±0.53 10.54±0.59 13.75±0.68 13.98±1.11 - 11.56±0.09 14.87±0.73 16.48±0.98

(a) CORe50/ConvNet (b) CLEAR100/ResNet

Figure 10. Consumed memory of different stream learning algo-
rithms. Ferret achieves rapid adaptation across varying memory
constraints.

(a) CLEAR100/ResNet (b) CLEAR100/MobileNet

Figure 11. Relationships between online accuracy and mem-
ory consumption of different pipeline parallelism strategies, the
marker size represents the standard errors of means.

sumption may not hold in scenarios where the data distribu-
tion changes significantly over a short time (e.g., emergency
handling). In such cases, ε in Ferret requires manual tuning
to ensure optimal performance.

	. Introduction
	. Related Work
	. Motivation
	. Problem Formulation
	. Methodology
	. Fine-grained Pipeline Parallelism
	Architectural design
	Iterative Gradient Compensation

	. Model Partitioning and Pipeline Planning
	Iterative Configuration Search (Sub-problem 1)
	Brute-force Planning (Sub-problem 2)

	. Experiments
	. Evaluation Setup
	. Overall Comparisons
	. Comparisons on Pipeline Parallelism
	. Comparisons on Gradients Compensation

	. Conclusion
	. Additional Related Work
	. Notations
	. Adaptation Rate and Memory Reduction for S1-S4
	. Algorithm Details
	. Implementation Details
	. Additional Evaluation Results
	. Limitations

