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Supplementary Material

In supplementary material, we provide the following
contents:
• Implementation details of FireEdit;
• More visual results on Emu Edit test set;
• Additional ablation studies
• Human evaluation;
• Societal impact.

1. Implementation Details of FireEdit
Training Protocol. Our complete training process is di-
vided into three stages. In the first stage, we train the Q-
Former module to align the output of the Vision-Language
Model (VLM) with the CLIP text encoder. In the second
stage, we use the pre-trained DINOv2 [12] as the image
encoder for the VLM. Region proposals are derived using
Deformable DETR [20], and ROIAlign [13] is used as the
region encoder, with weights loaded from [11]. The pa-
rameters of DINOv2, Deformable DETR, and ROIAlign are
frozen. We only train an additional Adapter, which maps vi-
sual features to the text space of the Large Language Model
(LLM). To ensure efficient training, the parameters of the
LLM are also frozen, and we use LoRA [4] to fine-tune
it. The editing representations aligned by Q-Former are di-
rectly used to guide the learning of the diffusion model. In
this stage, the parameters to be trained include the Adapter,
LoRA, Q-Former, and UNet [14] in the diffusion model. In
the third stage, we load the model weights from the previ-
ous stage and introduce the proposed HVCA and TATI. In
this stage, we optimize the parameters of LoRA, Q-Former,
HVCA, TATI, and Unet.
Implementation Details. During the first stage of training,
we use the AdamW optimizer [10] with a learning rate of
2e-4 and a weight decay parameter of 0. The training ob-
jectives at this stage are the combination of the mse loss
between the output of VLM and CLIP text encoder, and the
language model loss. The weights of both losses are 1. We
train the Q-Former for 120000 steps. In the second stage,
we also adopt the AdamW optimizer. The values of learn-
ing rate, weight decay, and warm-up ratio were set to 1e-5,
0, and 0.001, respectively. In this stage, the loss function
is composed of the language model loss and the diffusion
loss, both of the weights are set to 1. We train the model
for 5000 steps in this stage. The third stage employs the
same training settings as the second stage, and we optimize
FireEdit for 25000 steps. We perform all experiments on 16
NVIDIA A100 GPUs.
Training Dataset. Our training is divided into three stages.

In the first stage, our primary training data source is CC12M
[3]. The next two stages use the same training data, which
is divided into three categories: (1) segmentation dataset,
which comes from COCOStuff [2], RefCOCO [17], GRe-
fCOCO [8]; (2) image editing dataset, including Instruct-
Pix2Pix [1], MagicBrush [18], Ultraedit [19], and Rea-
sonEdit [5]; (3) visual question answering dataset, LLAVA-
instruct-150k [9].
Parameter Settings. In our FireEdit, we set the rank of
LORA for fine-tuning LLM to 8, alpha to 16, and Dropout
to 0.05. In the HVCA module, we set the number of layers
L = 2, the dimension of the input visual features to 1024,
the intermediate features to 1024, and 768 for the output
features. We initialize 16 learnable queries. In the TATI
module, we also set the number of layers N = 2, with the
dimension of the edit features set to 768, and we initial-
ize 77 learnable queries to keep consistent with the length
of text features extracted by the CLIP text encoder. In the
cross-attention layers of Unet, we set the weight factor λ as
1. We set Lr ≤ 100 equal to the number of detected ROIs.
The fused tokens are indeed represented by e ∈ R32×4096,
which corresponds to the hidden embeddings of 32 special
tokens {[IMGr]}32r=1. During the inference phase, we set
the timestep to 100, image guidance scale sI = 1.5, and
text guidance scale sT = 7.5.

2. More Visualizations
In this section, we present additional visualization re-
sults. To comprehensively demonstrate the superiority of
FireEdit, we validate it from both single-turn editing and
multi-turn editing. We compare our approach with other
state-of-the-art instruction-based editing methods, includ-
ing IP2P [1], MagicBrush [18], HQ-Edit [6], UltraEdit [19],
and SmartEdit [5]. In addition, we also provide more visu-
alization samples of text understanding.

2.1. Single-Turn Editing Examples
In Figure 1, we qualitatively compare our method with other
SOTA methods in three groups of editing actions. The
first three rows perform addition operations on the input
image under the guidance of the instructions. The middle
three rows change the content of the image, including fine-
grained local editing and changing the background content.
The last three rows remove specified objects in the input
image. We select input images with more complex back-
grounds from the Eem Edit test set [15]. As shown in Fig-
ure 1, our method can more accurately implement local ed-
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OursInput Image IP2P MagicBrush HQ-Edit UltraEdit SmartEdit

Add a blue 
BMW to the 
driveway.

Change the 
man's shirt 

from brown to 
orange.

Change the 
background to 
a snowcapped 

mountain.

Remove all 
the peanuts 
inside the 

white bowl.

Remove the 
floor-standing 
fan from the 

image.

Remove the 
mouse from 
the photo.

Make it so the 
woman

is eating an 
apple instead

Add a large 
cruise ship to 

the water.

Add a duck 
taking a bath 
in the sink.

Figure 1. Qualitative comparison. We compare the editing performance of FireEdit with SOTA methods on the Emu Edit test set. The
leftmost column contains the editing instructions. Compared with other SOTA methods, our approach is superior in accurately locating the
edited objects or regions and preserving the detailed information of the input image.

its across the three edit types. In contrast, other baseline
methods struggle to locate the edit targets or locations ex-

pressed in the instructions, and even alter the undesired ar-
eas. For example, in the first row, IP2P does not preserve
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"Can we 
put a river 
next to the 

field?"

"Can we 
have 

mountains 
on the 

background?
"

"It should 
be a horse 

on the 
field."

Ours IP2P MagicBrush HQ-Edit UltraEdit SmartEdit

"let the 
donuts have 
strawberry 
glaze on 
them"

"change 
the alcohol 
shelf into a 
bookshelf"

"let a 
smiling 

man stand 
nearby"

Ours IP2P MagicBrush HQ-Edit UltraEdit SmartEdit

Figure 2. The qualitative comparison for our method and another state-of-the-art approach on the MagrichBrush benchmark under the
multi-turn setting.
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What is the object that can load 
garbage? Remove this object.

What is the object that can be used 
to eat the cake? Remove this object. UFO

Input Image Result Input Image Result Input Image Result
Change the left(1)/right(2) animal to fox Change the bigger(1)/smaller(2) zebra to a rhino

Input Image Result (1) Result (2) Input Image Result (1) Result (2)

Figure 3. The visualization of text understanding.

Sprinkle red pepper flake on top of the food.

Input Image Baseline + Region +Region+TATI +Region+HVCA Ours(Full)

Make the water in the vase blue.

Figure 4. Visualization of ablation studies of different components.

the pedestrian and the coast, while SmartEdit adds a ship in
the undesired area. In the seventh row, IP2P, MagicBrush,
HQ-Edit, and UltraEdit do not accurately locate the ”white
bowl”. Although SmartEdit locates the ”white bowl”, it
does not completely remove the ”peanuts”. Our method not
only accurately locates the ”white bowl”, but also removes
the target elegantly. Therefore, our method has advantages
over other methods in fine-grained local editing.

2.2. Multi-Turn Editing Examples

We perform three consecutive rounds of editing on two in-
put images, with each round executing different editing in-
structions. We compare the editing results of our method
with those of other methods. As shown in Figure 2, in the
first example, each round of editing by our method success-
fully understands the instructions and accurately executes
the edits without altering the semantic layout of the input
image. In the second example, our method generates editing
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SI =1 SI =1.5 SI =2 SI =3 SI =4 SI =5 SI =6 SI =7.5

Add a UFO in the sky.

Give the door a light pink color.

Input Image

Make the plate blue.

Figure 5. Effects of different image guidance scales.

seed=0 seed=30 seed=42 seed=50 seed=100 seed=1000 seed=10000 seed=99999Input Image

Add a blinking light to the top of the hat.

Change the color of the floor to green.

Figure 6. Effects of different random seeds.

results that are highly consistent with the instructions with-
out causing any disharmony. However, other methods can-
not generate satisfactory multi-round editing results, which
are not preferred in practical applications.

2.3. Text Understanding
Our method is capable of understanding text and perform-
ing reasoning. As illustrated in Figure 3, it successfully
leverages the reasoning ability of the LLM to infer and edit
target objects precisely in scenarios that involve direction
and relative size. Even for a simple instruction like “UFO”,
our method understands it well and adds the object in an
appropriate place.

3. Additional Ablation Studies
In this section, we perform ablation studies on the compo-
nents proposed in our method, the complexity and training

Table 1. Comparison of complexity and training data.
Method Data volume Speed Trainable Param# Memory CLIP-I↑ CLIP-T↑

UltraEdit 4M 3.60s 2028.4M 18.5G 0.8120 0.2773
SmartEdit 771k 7.30s 1163.8M 38.9G 0.8592 0.2740
SmartEdit 771k+4M 7.30s 1163.8M 38.9G 0.8721 0.2755

Ours 771k 7.50s 1093.8M 36G 0.8975 0.2762
Ours 771k+4M 7.50s 1093.8M 36G 0.9140 0.2783

data, the selection of detectors, the image guidance scale sI ,
different random seeds, and sampling timesteps. We visual-
ize the editing results under different factors.

3.1. Effect of Components
Figure 4 showcases two key module behaviors: HVCA
preserves semantic details despite minor non-target effects,
while TATI leverages temporal cues for superior text-guided
denoising. Their synergistic integration enables precise lo-
calized editing. Specifically, TATI incorporates timestep in-
formation across the diffusion process, optimizing text rep-
resentation utilization.
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Add a Santa hat to the cat's head.

T=20 T=30 T=50 T=60 T=80 T=100

Make the boy have a shaved head.

Input Image

Change the color of the car to black.

Figure 7. Effects of different sampling timesteps.

Input Image Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7

1. Editing Instruction: Add a UFO in the sky.

Method 5

Method 2

Method 1

Method 3

Method 4

Method 6

Method 7

Figure 8. The interface of user preference study questionnaire.

3.2. Comparison of Complexity and Training Data

We estimate model efficiencies on a single A100 GPU
with 50 denoising steps for all methods on the Emu Edit
Test, as detailed in Table 1. The inference speed of our

method (7.5s) is similar to those of cutting-edge methods
(e.g., SmartEdit, 7.3s), but our method achieves significant
performance improvements in fine-grained editing tasks.
Moreover, with fewer trainable parameters, our approach
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Table 2. Ablation studies of regional encoders.
Method L1↓ CLIP-I↑ DINO↑ LPIPS↓ CLIP-T↑

Ours (w/224) 0.0723 0.9093 0.8762 0.1841 0.2798
Ours (w/448) 0.0772 0.9046 0.8626 0.1926 0.2786
Ours (+YOLOv10) 0.0586 0.9074 0.8775 0.1705 0.2785
Ours (+SAM) 0.0561 0.9159 0.8885 0.1632 0.2769
Ours 0.0574 0.9140 0.8829 0.1373 0.2783

fine-tunes the model in just 64 hours on 16 A100 GPUs,
achieving a better balance between efficiency and perfor-
mance. Table 1 summarizes the training data used in pre-
vious methods. For a fair comparison, we adopt SmartEdit
as the baseline and utilize the same training data. When
trained on the 771k dataset, our method consistently sur-
passes SmartEdit across all metrics.

3.3. Effects of Different Detectors
We aim at image editing for open-world scenarios, hence we
adopt a modified DDETR which has a class-agnostic detec-
tion head and can detect more high-quality potential ROIs
in open scenes. It can be replaced by other off-the-shelf de-
tectors/segmentation models like YOLOv10 [16] and SAM
[7]. As shown in Table 2, our method performs stably with
these detectors. The latency of extracting region tokens is
about 0.2s, which is ignorable. In the HVCA module, we
employ two resolutions (224 and 448) to enhance visual de-
tails. By integrating features from the CLIP image encoder
and DINOV2, HVCA effectively captures both global and
local visual information.

3.4. Image Guidance Scale sI

To effectively observe the impact of the image guidance
scale on the editing results, we set the random seed to 42,
the sampling timestep to 100, and the text guidance strength
to 7.5. We change the value of sI from 1 to 7.5. The visu-
alization results are shown in Figure 5. As sI increases, the
intensity of image guidance gradually increases, while the
influence of text guidance gradually decreases. When sI in-
creases to 6, the effect of text instructions disappears. We
found that the editing result is best when sI is 1.5, which is
consistent with [1, 5].

3.5. Random Seed
We fixed the text guidance factor at 7.5, the image guidance
factor at 1.5, and the default sampling timestep at 100. We
selected a set of random seeds from a range of 0 to 100000.
As shown in Figure 6, the value of the random seed has a
minimal impact on the editing results, indicating that our
method exhibits strong robustness.

3.6. Sampling Timestep
We keep other parameters unchanged and visualize the re-
sults when the sampling timestep is 20, 30, 50, 60, 80, and
100. In Figure 7, we observe that as the sampling timestep

becomes larger, the editing quality first improves and then
decreases. This indicates that with an increase in sampling
timestep, the risk of over-editing becomes higher.

4. Human Evaluation
We sampled 30 real images from the test set and generated
edited results on the 7 methods, resulting in 30 questions.
We invited 40 participants to answer these 30 questions. To
ensure that participants could choose the best edited result
by asking them to give a comprehensive rating based on the
following three aspects: 1) semantic consistency, i.e., the
preservation of undesired areas in the edited image; 2) text-
image alignment between the edited image and the output
caption; and 3) the quality and fidelity of the edited image.
Figure 8 shows the questionnaire format we used in the hu-
man preference study, where the order of displaying the 7
methods for each question was randomized.

5. Societal Impact
We propose a novel image editing method that leverages
the powerful multimodal perception capabilities of visual
language models (VLMs) to facilitate the understanding of
editing instructions in complex scenarios. By incorporating
regional details, we further enhance the fine-grained per-
ception ability of the VLM, thereby implicitly locating the
desired editing regions or targets. By associating time step
information with the output of the VLM, the generated im-
ages can preserve high-frequency detail information. Con-
sequently, our editing technique can be applied to social me-
dia and assistive art creation. Due to the fine-grained local
control achieved by our method, it could potentially be mis-
used by malicious groups to manipulate image content and
mislead the public. However, we believe that these potential
threats will be mitigated with the improvement of regula-
tions and the maturity of intelligent detection technologies.
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Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al.
Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193, 2023. 1

[13] Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdel-
rahman Shaker, Salman Khan, Hisham Cholakkal, Rao M
Anwer, Eric Xing, Ming-Hsuan Yang, and Fahad S Khan.
Glamm: Pixel grounding large multimodal model. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13009–13018, 2024. 1

[14] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III
18, pages 234–241. Springer, 2015. 1

[15] Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain,
Amit Zohar, Oron Ashual, Devi Parikh, and Yaniv Taigman.
Emu edit: Precise image editing via recognition and gen-
eration tasks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8871–
8879, 2024. 1

[16] Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jun-
gong Han, et al. Yolov10: Real-time end-to-end object de-
tection. Advances in Neural Information Processing Systems,
37:107984–108011, 2024. 7

[17] Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg,
and Tamara L Berg. Modeling context in referring expres-
sions. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part II 14, pages 69–85. Springer, 2016.
1

[18] Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su.
Magicbrush: A manually annotated dataset for instruction-
guided image editing. Advances in Neural Information Pro-
cessing Systems, 36, 2024. 1

[19] Haozhe Zhao, Xiaojian Ma, Liang Chen, Shuzheng Si, Ru-
jie Wu, Kaikai An, Peiyu Yu, Minjia Zhang, Qing Li, and
Baobao Chang. Ultraedit: Instruction-based fine-grained im-
age editing at scale. arXiv preprint arXiv:2407.05282, 2024.
1

[20] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 1

8


	Implementation Details of FireEdit
	More Visualizations
	 Single-Turn Editing Examples
	Multi-Turn Editing Examples
	Text Understanding

	Additional Ablation Studies
	Effect of Components
	Comparison of Complexity and Training Data
	Effects of Different Detectors
	Image Guidance Scale sI
	Random Seed
	Sampling Timestep

	Human Evaluation
	 Societal Impact

