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7. Appendix

Overview. The supplementary includes the following sec-

tions:

* Section 7.1. Computation Methodology for Attack Suc-
cess Rate.

* Section 7.2. More Detailed Attack Settings.

¢ Section 7.3. More Comparison Studies on LFW.

* Section 7.4. Comparison Studies on CelebA-HQ.

* Section 7.5. Hyper-parameter Analysis Studies.

* Section 7.6. Visual Quality Study.

* Section 7.7. Ethics and Potential Broader Impact.

7.1. Computation Methodology for Attack Success
Rate

In our study, the Attack Success Rate (ASR) is determined
using the following formula:
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ASR =

(19)
where the notation D designates a predefined distance metric
for assessing the performance of adversarial face examples,
N, denotes the total count of face pairs, and ¢’ signifies the
attack threshold.

7.2. More Detailed Attack Settings

In the DPO stage, we set the learning rate to 0.1. In the
HMA stage, we specifically target convolutional layers to
introduce beneficial perturbations. We maintain the step size
for adversarial perturbations 3 at a fixed value of 1. We have
set the scale factor d to 32.0 and the margin m to 0.5. We
employ the SGD optimizer for model augmentation.

For the tables and figures mentioned—Table 6, Table 7,
Table 1, Table 5, Table 9, Table 10, Table 11, Table 8, Fig-
ure 8, Figure 5, and Figure 6, we determine setting c to 35,
which corresponds to the optimal value from the left plot in
Figure 7, and setting the step size of beneficial perturbations
71 to 8e-4, as indicated by the optimal value from the right
plot in Figure 7.

Regarding the bottom portion of Figure 1, we have con-
figured the settings for LGV according to the same hyper-
parameters as specified in Table 2. Similarly, the settings
for DI, BPFA, and DPA are aligned with those detailed in
Table 1.

Table 5. Comparisons of black-box ASR (%) results for attacks
using IR152 as the surrogate model on the LFW dataset. I, S, F, M
denote IR152, IRSES0, FaceNet, and MobileFace, respectively.

Attacks S F M Iad’u Sadu Fadv M(L(iU
FIM [68] 290 93 56 138 68 3.6 24
DI [59] 469 21.7 144 280 124 79 6.1

DFANet [69] | 50.7 155 125 256 11.0 5.8 32
VMI [50] 49.7 239 187 30.1 183 128 112

SSA [27] 550 219 240 288 142 9.0 6.1
SIA [52] 526 263 196 298 183 11.0 95
BPFA [71] 46.7 129 92 20.1 89 4.7 3.1
BSR [46] 353 147 73 192 99 6.6 43
Ours 994 903 964 740 699 420 577

Table 6. Comparisons of black-box ASR (%) results for attacks
using IRSES0 as the surrogate model on the LFW dataset. I, S, F,
M denote IR152, IRSESO0, FaceNet, and MobileFace, respectively.

Attacks 1 F M e gedv padvpfadv
FIM [68] 323 155 791 98 175 55 5.7

DI [59] 599 475 977 259 415 156 238
DFANet [69] | 443 267 969 153 28.0 8.6 124
VMI [50] 540 340 964 225 376 131 203
SSA [27] 58.8 37.1 973 224 385 123 18.1
SIA [52] 584 414 982 222 376 139 233
BPFA [71] 544 275 946 176 294 8.1 12.8
BSR [46] 287 184 845 92 163 6.5 7.6

Ours 744 89.8 983 579 682 383 59.7

Table 7. Comparisons of black-box ASR (%) results for attacks
using FaceNet as the surrogate model on the LFW dataset. I, S, F,
M denote IR152, IRSES50, FaceNet, and MobileFace, respectively.

Attacks 1 S M Iadv Sa,d'u Fud’u Madv
FIM [68] 7.8 125 54 7.5 6.9 17.2 2.5
DI [59] 186 322 185 180 158 30.2 9.9
DFANet [69] | 12.1 222 11.7 11.3 104 25.1 5.5
VMI [50] 244 351 20.7 244 232 363 152
SSA [27] 21.6 448 308 177 170 319 109
SIA [52] 29.1 429 262 287 239 383 16.7
BPFA [71] 173 316 147 134 130 226 7.8
BSR [46] 28,6 424 259 262 243 342 160
Ours 42.6 65.0 569 473 454 540 31.1

7.3. More Comparison Studies on LFW

To validate the efficacy of our proposed attack method, we
generate adversarial examples using IR152, IRSE50, and
FaceNet as surrogate models on the LFW dataset. The black-
box performance is presented in Table 5, Table 6, and Table 7,
respectively. Our method consistently outperforms baseline
attacks, demonstrating its effectiveness in improving the
transferability of adversarial examples.



Table 8. Comparisons of black-box ASR (%) results for attacks us-
ing IR152 as the surrogate model on the CelebA-HQ dataset. I, S, F,
M denote IR152, IRSE50, FaceNet, and MobileFace, respectively.

Table 11. Comparisons of black-box ASR (%) results for attacks us-
ing MobileFace as the surrogate model on the CelebA-HQ dataset.
I, S, F, M denote IR152, IRSE50, FaceNet, and MobileFace, re-

spectively.

Attacks S F M [edv gedv Radvp\fjedv
FIM [68] 392 141 126 183 121 43 49 Attacks I S F [edv  gedv padv padv
DI [59] 576 276 270 30.1 205 85 108 FIM [68] 72 690 80 33 54 24 120
DFANet [69] | 612 21.5 224 266 170 57 19 DI [59] 250 970 320 11.0 214 82 390
VMI [50] 56.9 264 277 324 261 126 166 DFANet [69] | 10.7 850 126 37 91 29 188
SSA[27] 62.1 233 307 306 194 91 103 VMI [50] 202 947 196 7.8 158 44 315
SIA [52] 60.8 269 304 304 243 12 142 SSA [27] 220 954 210 79 152 53 331
BPFA [71] 546 158 164 220 142 50 54 SIA [52] 254 966 259 89 184 59 358
BSR [46] 429 173 150 21.1 154 6.6 6.8 BPFA [71] 207 947 175 67 138 45 297
Ours 98.0 824 951 535 61.5 276 528 BSR [46] 108 77.1 119 38 81 28 151
Ours 59.6 972 835 371 575 274 617
Table 9. Comparisons of black-box ASR (%) results for attacks @ ®

using IRSES5O0 as the surrogate model on the CelebA-HQ dataset. I,
S, F, M denote IR152, IRSE50, FaceNet, and MobileFace, respec-

tively.

Attacks I F M ey gadv padv pfadv
FIM [68] 363 162 805 105 21.6 5.1 9.5

DI [59] 593 428 976 205 394 120 285
DFANet [69] | 45.9 255 97.0 140 308 6.6 15.4
VMI [50] 567 319 96.6 185 375 99 243
SSA [27] 583 348 975 191 382 89 221
SIA [52] 60.7 40.0 979 20.1 40.1 115 264
BPFA [71] 56.8 279 953 167 328 75 17.3
BSR [46] 357 199 864 112 204 53 12.0
Ours 68.9 817 98.0 40.2 60.6 255 538

Table 10. Comparisons of black-box ASR (%) results for attacks
using FaceNet as the surrogate model on the CelebA-HQ dataset. I,
S, F, M denote IR152, IRSE50, FaceNet, and MobileFace, respec-

tively.

Attacks I S M edv gadv padv pfedv
FIM [68] 107 165 96 72 82 13.0 44

DI [59] 22.8 304 229 150 199 217 118
DFANet [69] | 152 243 197 100 141 180 7.7

VMI [50] 264 364 257 195 252 253 164
SSA [27] 235 415 361 149 194 224 132
SIA [52] 293 445 357 215 260 276 184
BPFA [71] 20.0 31.0 21.7 121 140 168 79

BSR [46] 27.8 439 340 192 259 260 183
Ours 355 569 587 299 362 322 283

7.4. Comparison Studies on CelebA-HQ

To further validate the efficacy of our proposed attack
method, we create adversarial examples utilizing the CelebA-
HQ dataset. The black-box performance of our approach,
which employs IR152, IRSE50, FaceNet, and MobileFace as
surrogate models on the CelebA-HQ dataset, is presented in
Table 8, Table 9, Table 10, and Table 11, respectively. These
results consistently indicate that our method outperforms
the baseline attacks, thereby highlighting its effectiveness in
improving the transferability of adversarial examples.

—— Single

vy 0
rao / ——e -
—a— Diverse aoakl K - —e— Ours
704 At 89.0 /
/"“ Nvvy
/Ah Jovn_ v
’ X Ty
65 ot A A ] o,
» / e o 8838 \
@ % / 7]
< & gt <

P .
/y,Y»V/ 88.6 1
1 T .

0 10 20 30 25 5.0 715 10.0 125 15.0
< n(x107%

S
3

».
~.

m
%
—
o

Figure 7. The hyper-parameter analysis on the (a) ¢ and (b) 7.

7.5. Hyper-parameter Analysis Studies

The hyper-parameter analysis on the c value. The value
of ¢ determines the number of ensembles in our proposed
attack method, which significantly affects its performance.
Hence, we conduct ablation studies on ¢ using the LFW
dataset with MobileFace as the surrogate model. To further
verify the effectiveness of diverse parameters in enhancing
transferability, we select two types of attack methods for
comparison. Firstly, we use MobileFace models fine-tuned
by a pre-trained backbone and a randomly initialized head in
each epoch to generate adversarial examples. We term this
adversarial attack method ‘Single’. Secondly, we choose the
models trained by ‘Single’ and MobileFace models trained
by a randomly initialized backbone and head in each epoch
to create adversarial examples, implying that the parameters
of the trained models are more diverse. We term this attack
method ‘Diverse’. The average ASR on IR152, IRSESO0,
FaceNet, and MobileFace is demonstrated in the left plot
of Figure 7. The left plot of Figure 7 shows that the ASR
increases and then converges as c increases. To analyze the
reason, we need to consider the property of c. ¢ determines
the number of models to be aggregated. If more models are
aggregated in each training epoch, the aggregation capacity
will increase. If ¢ continues to increase, due to the similarity
of the aggregated models in the later epochs, the ASR con-
verges. Moreover, the left plot of Figure 7 demonstrates that
the performance of ‘Diverse’ is higher than that of ‘Single’,
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Figure 8. Comparison of LPIPS values across various attacks, with
lower values signifying superior visual quality.

which verifies the effectiveness of parameter diversity in
improving transferability of crafted adversarial examples.
The hyper-parameter analysis on the 1 value. The 7 value
is the step size of beneficial perturbations, which is a key
hyperparameter in our proposed attack method. We will
conduct ablation studies on this parameter using the LFW
dataset with MobileFace as the surrogate model. The average
ASR on IR152, IRSE50, FaceNet, and MobileFace is shown
in the right plot of Figure 7. To assess the effectiveness of
hard models in enhancing the transferability of adversarial
examples, we use the Diverse Model Aggregation (DMA) as
a baseline for comparison. DMA replaces the hard models in
our method with their corresponding vanilla models. From
the right plot of Figure 7, we observe that as the step size
of beneficial perturbations increases, the ASR initially rises
and then declines. To understand this behavior, we should
consider the nature of beneficial perturbations. These per-
turbations are added to the feature maps of FR models to
increase loss when crafting adversarial examples, effectively
transforming FR models into hard models. Increasing the
step size initially boosts transferability by strengthening the
transition to hard models. However, further increasing the
step size can degrade the features in the feature maps dur-
ing forward propagation, ultimately reducing overall attack
performance. Additionally, the right plot of Figure 7 demon-
strates that the optimal performance of our proposed method
surpasses that of DMA, further validating the effectiveness
of the hard model ensemble in our attack method.

7.6. Visual Quality Study

Furthermore, we evaluate the visual quality of our proposed
method against that of previous attack methods. We choose
FIM, DI, DFANet, VMI, SSA, SIA, BPFA, and BSR as
comparative baselines and generate adversarial examples
using MobileFace as the surrogate model on the LFW dataset.
The experimental configuration is consistent with the one
detailed in Table 1. The outcomes are depicted in Figure 8.

As shown in Figure 8, our proposed method achieves visual
quality performance on par with other methods. Notably, the
transferability of the adversarial examples generated by our
method significantly exceeds that of the baselines, which
further underscores the superiority of our proposed method.

7.7. Ethics and Potential Broader Impact

This paper introduces research that contributes to the ad-
vancement of the field within Computer Vision and Pattern
Recognition. The attack method we propose poses a po-
tential threat to the security of FR models. Our goal is
to heighten awareness through this proposed method and
strengthen the resilience of FR models against such vulnera-
bilities.



