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7. Appendix

Overview. The supplementary includes the following sec-
tions:
• Section 7.1. Computation Methodology for Attack Suc-

cess Rate.
• Section 7.2. More Detailed Attack Settings.
• Section 7.3. More Comparison Studies on LFW.
• Section 7.4. Comparison Studies on CelebA-HQ.
• Section 7.5. Hyper-parameter Analysis Studies.
• Section 7.6. Visual Quality Study.
• Section 7.7. Ethics and Potential Broader Impact.

7.1. Computation Methodology for Attack Success
Rate

In our study, the Attack Success Rate (ASR) is determined
using the following formula:
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where the notation rD designates a predefined distance metric
for assessing the performance of adversarial face examples,
Np denotes the total count of face pairs, and ti signifies the
attack threshold.

7.2. More Detailed Attack Settings

In the DPO stage, we set the learning rate to 0.1. In the
HMA stage, we specifically target convolutional layers to
introduce beneficial perturbations. We maintain the step size
for adversarial perturbations β at a fixed value of 1. We have
set the scale factor d to 32.0 and the margin m to 0.5. We
employ the SGD optimizer for model augmentation.

For the tables and figures mentioned—Table 6, Table 7,
Table 1, Table 5, Table 9, Table 10, Table 11, Table 8, Fig-
ure 8, Figure 5, and Figure 6, we determine setting c to 35,
which corresponds to the optimal value from the left plot in
Figure 7, and setting the step size of beneficial perturbations
η to 8e-4, as indicated by the optimal value from the right
plot in Figure 7.

Regarding the bottom portion of Figure 1, we have con-
figured the settings for LGV according to the same hyper-
parameters as specified in Table 2. Similarly, the settings
for DI, BPFA, and DPA are aligned with those detailed in
Table 1.

Table 5. Comparisons of black-box ASR (%) results for attacks
using IR152 as the surrogate model on the LFW dataset. I, S, F, M
denote IR152, IRSE50, FaceNet, and MobileFace, respectively.

Attacks S F M Iadv Sadv Fadv Madv

FIM [68] 29.0 9.3 5.6 13.8 6.8 3.6 2.4
DI [59] 46.9 21.7 14.4 28.0 12.4 7.9 6.1
DFANet [69] 50.7 15.5 12.5 25.6 11.0 5.8 3.2
VMI [50] 49.7 23.9 18.7 30.1 18.3 12.8 11.2
SSA [27] 55.0 21.9 24.0 28.8 14.2 9.0 6.1
SIA [52] 52.6 26.3 19.6 29.8 18.3 11.0 9.5
BPFA [71] 46.7 12.9 9.2 20.1 8.9 4.7 3.1
BSR [46] 35.3 14.7 7.3 19.2 9.9 6.6 4.3
Ours 99.4 90.3 96.4 74.0 69.9 42.0 57.7

Table 6. Comparisons of black-box ASR (%) results for attacks
using IRSE50 as the surrogate model on the LFW dataset. I, S, F,
M denote IR152, IRSE50, FaceNet, and MobileFace, respectively.

Attacks I F M Iadv Sadv Fadv Madv

FIM [68] 32.3 15.5 79.1 9.8 17.5 5.5 5.7
DI [59] 59.9 47.5 97.7 25.9 41.5 15.6 23.8
DFANet [69] 44.3 26.7 96.9 15.3 28.0 8.6 12.4
VMI [50] 54.0 34.0 96.4 22.5 37.6 13.1 20.3
SSA [27] 58.8 37.1 97.3 22.4 38.5 12.3 18.1
SIA [52] 58.4 41.4 98.2 22.2 37.6 13.9 23.3
BPFA [71] 54.4 27.5 94.6 17.6 29.4 8.1 12.8
BSR [46] 28.7 18.4 84.5 9.2 16.3 6.5 7.6
Ours 74.4 89.8 98.3 57.9 68.2 38.3 59.7

Table 7. Comparisons of black-box ASR (%) results for attacks
using FaceNet as the surrogate model on the LFW dataset. I, S, F,
M denote IR152, IRSE50, FaceNet, and MobileFace, respectively.

Attacks I S M Iadv Sadv Fadv Madv

FIM [68] 7.8 12.5 5.4 7.5 6.9 17.2 2.5
DI [59] 18.6 32.2 18.5 18.0 15.8 30.2 9.9
DFANet [69] 12.1 22.2 11.7 11.3 10.4 25.1 5.5
VMI [50] 24.4 35.1 20.7 24.4 23.2 36.3 15.2
SSA [27] 21.6 44.8 30.8 17.7 17.0 31.9 10.9
SIA [52] 29.1 42.9 26.2 28.7 23.9 38.3 16.7
BPFA [71] 17.3 31.6 14.7 13.4 13.0 22.6 7.8
BSR [46] 28.6 42.4 25.9 26.2 24.3 34.2 16.0
Ours 42.6 65.0 56.9 47.3 45.4 54.0 31.1

7.3. More Comparison Studies on LFW

To validate the efficacy of our proposed attack method, we
generate adversarial examples using IR152, IRSE50, and
FaceNet as surrogate models on the LFW dataset. The black-
box performance is presented in Table 5, Table 6, and Table 7,
respectively. Our method consistently outperforms baseline
attacks, demonstrating its effectiveness in improving the
transferability of adversarial examples.



Table 8. Comparisons of black-box ASR (%) results for attacks us-
ing IR152 as the surrogate model on the CelebA-HQ dataset. I, S, F,
M denote IR152, IRSE50, FaceNet, and MobileFace, respectively.

Attacks S F M Iadv Sadv Fadv Madv

FIM [68] 39.2 14.1 12.6 18.3 12.1 4.3 4.9
DI [59] 57.6 27.6 27.0 30.1 20.5 8.5 10.8
DFANet [69] 61.2 21.5 22.4 26.6 17.0 5.7 7.9
VMI [50] 56.9 26.4 27.7 32.4 26.1 12.6 16.6
SSA [27] 62.1 23.3 30.7 30.6 19.4 9.1 10.3
SIA [52] 60.8 26.9 30.4 30.4 24.3 12 14.2
BPFA [71] 54.6 15.8 16.4 22.0 14.2 5.0 5.4
BSR [46] 42.9 17.3 15.0 21.1 15.4 6.6 6.8
Ours 98.0 82.4 95.1 53.5 61.5 27.6 52.8

Table 9. Comparisons of black-box ASR (%) results for attacks
using IRSE50 as the surrogate model on the CelebA-HQ dataset. I,
S, F, M denote IR152, IRSE50, FaceNet, and MobileFace, respec-
tively.

Attacks I F M Iadv Sadv Fadv Madv

FIM [68] 36.3 16.2 80.5 10.5 21.6 5.1 9.5
DI [59] 59.3 42.8 97.6 20.5 39.4 12.0 28.5
DFANet [69] 45.9 25.5 97.0 14.0 30.8 6.6 15.4
VMI [50] 56.7 31.9 96.6 18.5 37.5 9.9 24.3
SSA [27] 58.3 34.8 97.5 19.1 38.2 8.9 22.1
SIA [52] 60.7 40.0 97.9 20.1 40.1 11.5 26.4
BPFA [71] 56.8 27.9 95.3 16.7 32.8 7.5 17.3
BSR [46] 35.7 19.9 86.4 11.2 20.4 5.3 12.0
Ours 68.9 81.7 98.0 40.2 60.6 25.5 53.8

Table 10. Comparisons of black-box ASR (%) results for attacks
using FaceNet as the surrogate model on the CelebA-HQ dataset. I,
S, F, M denote IR152, IRSE50, FaceNet, and MobileFace, respec-
tively.

Attacks I S M Iadv Sadv Fadv Madv

FIM [68] 10.7 16.5 9.6 7.2 8.2 13.0 4.4
DI [59] 22.8 30.4 22.9 15.0 19.9 21.7 11.8
DFANet [69] 15.2 24.3 19.7 10.0 14.1 18.0 7.7
VMI [50] 26.4 36.4 25.7 19.5 25.2 25.3 16.4
SSA [27] 23.5 41.5 36.1 14.9 19.4 22.4 13.2
SIA [52] 29.3 44.5 35.7 21.5 26.0 27.6 18.4
BPFA [71] 20.0 31.0 21.7 12.1 14.0 16.8 7.9
BSR [46] 27.8 43.9 34.0 19.2 25.9 26.0 18.3
Ours 35.5 56.9 58.7 29.9 36.2 32.2 28.3

7.4. Comparison Studies on CelebA-HQ

To further validate the efficacy of our proposed attack
method, we create adversarial examples utilizing the CelebA-
HQ dataset. The black-box performance of our approach,
which employs IR152, IRSE50, FaceNet, and MobileFace as
surrogate models on the CelebA-HQ dataset, is presented in
Table 8, Table 9, Table 10, and Table 11, respectively. These
results consistently indicate that our method outperforms
the baseline attacks, thereby highlighting its effectiveness in
improving the transferability of adversarial examples.

Table 11. Comparisons of black-box ASR (%) results for attacks us-
ing MobileFace as the surrogate model on the CelebA-HQ dataset.
I, S, F, M denote IR152, IRSE50, FaceNet, and MobileFace, re-
spectively.

Attacks I S F Iadv Sadv Fadv Madv

FIM [68] 7.2 69.0 8.0 3.3 5.4 2.4 12.0
DI [59] 25.0 97.0 32.0 11.0 21.4 8.2 39.0
DFANet [69] 10.7 85.0 12.6 3.7 9.1 2.9 18.8
VMI [50] 20.2 94.7 19.6 7.8 15.8 4.4 31.5
SSA [27] 22.0 95.4 21.0 7.9 15.2 5.3 33.1
SIA [52] 25.4 96.6 25.9 8.9 18.4 5.9 35.8
BPFA [71] 20.7 94.7 17.5 6.7 13.8 4.5 29.7
BSR [46] 10.8 77.1 11.9 3.8 8.1 2.8 15.1
Ours 59.6 97.2 83.5 37.1 57.5 27.4 61.7

0 10 20 30
c

55

60

65

70

75

A
SR

(a)

Single
Diverse

2.5 5.0 7.5 10.0 12.5 15.0
 (×10 4)

88.4

88.6

88.8

89.0

A
SR

(b)

DMA
Ours

Figure 7. The hyper-parameter analysis on the (a) c and (b) η.

7.5. Hyper-parameter Analysis Studies

The hyper-parameter analysis on the c value. The value
of c determines the number of ensembles in our proposed
attack method, which significantly affects its performance.
Hence, we conduct ablation studies on c using the LFW
dataset with MobileFace as the surrogate model. To further
verify the effectiveness of diverse parameters in enhancing
transferability, we select two types of attack methods for
comparison. Firstly, we use MobileFace models fine-tuned
by a pre-trained backbone and a randomly initialized head in
each epoch to generate adversarial examples. We term this
adversarial attack method ‘Single’. Secondly, we choose the
models trained by ‘Single’ and MobileFace models trained
by a randomly initialized backbone and head in each epoch
to create adversarial examples, implying that the parameters
of the trained models are more diverse. We term this attack
method ‘Diverse’. The average ASR on IR152, IRSE50,
FaceNet, and MobileFace is demonstrated in the left plot
of Figure 7. The left plot of Figure 7 shows that the ASR
increases and then converges as c increases. To analyze the
reason, we need to consider the property of c. c determines
the number of models to be aggregated. If more models are
aggregated in each training epoch, the aggregation capacity
will increase. If c continues to increase, due to the similarity
of the aggregated models in the later epochs, the ASR con-
verges. Moreover, the left plot of Figure 7 demonstrates that
the performance of ‘Diverse’ is higher than that of ‘Single’,
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Figure 8. Comparison of LPIPS values across various attacks, with
lower values signifying superior visual quality.

which verifies the effectiveness of parameter diversity in
improving transferability of crafted adversarial examples.
The hyper-parameter analysis on the η value. The η value
is the step size of beneficial perturbations, which is a key
hyperparameter in our proposed attack method. We will
conduct ablation studies on this parameter using the LFW
dataset with MobileFace as the surrogate model. The average
ASR on IR152, IRSE50, FaceNet, and MobileFace is shown
in the right plot of Figure 7. To assess the effectiveness of
hard models in enhancing the transferability of adversarial
examples, we use the Diverse Model Aggregation (DMA) as
a baseline for comparison. DMA replaces the hard models in
our method with their corresponding vanilla models. From
the right plot of Figure 7, we observe that as the step size
of beneficial perturbations increases, the ASR initially rises
and then declines. To understand this behavior, we should
consider the nature of beneficial perturbations. These per-
turbations are added to the feature maps of FR models to
increase loss when crafting adversarial examples, effectively
transforming FR models into hard models. Increasing the
step size initially boosts transferability by strengthening the
transition to hard models. However, further increasing the
step size can degrade the features in the feature maps dur-
ing forward propagation, ultimately reducing overall attack
performance. Additionally, the right plot of Figure 7 demon-
strates that the optimal performance of our proposed method
surpasses that of DMA, further validating the effectiveness
of the hard model ensemble in our attack method.

7.6. Visual Quality Study
Furthermore, we evaluate the visual quality of our proposed
method against that of previous attack methods. We choose
FIM, DI, DFANet, VMI, SSA, SIA, BPFA, and BSR as
comparative baselines and generate adversarial examples
using MobileFace as the surrogate model on the LFW dataset.
The experimental configuration is consistent with the one
detailed in Table 1. The outcomes are depicted in Figure 8.

As shown in Figure 8, our proposed method achieves visual
quality performance on par with other methods. Notably, the
transferability of the adversarial examples generated by our
method significantly exceeds that of the baselines, which
further underscores the superiority of our proposed method.

7.7. Ethics and Potential Broader Impact
This paper introduces research that contributes to the ad-
vancement of the field within Computer Vision and Pattern
Recognition. The attack method we propose poses a po-
tential threat to the security of FR models. Our goal is
to heighten awareness through this proposed method and
strengthen the resilience of FR models against such vulnera-
bilities.


