Learning Flow Fields in Attention for Controllable Person Image Generation

Supplementary Material

In the supplementary material, we provide additional ex-
perimental details along with qualitative and quantitative re-
sults. Additionally, we discuss our diffusion-based baseline
and Leffa loss, along with their limitations.

A. Experimental Details
A.1. Datasets

In this section, we provide a detailed introduction to the
three datasets used in our study.

VITON-HD [6] dataset is the most commonly used dataset
for virtual try-on task. The training set contains 11,647 per-
son and garment image pairs, and the test set contains 2,032
pairs. All images are front-view, upper-body garments with
a resolution of 1024 x 768.

DressCode [34] dataset is composed of various types of
garments, comprising 48,392 person and garment image
pairs in the training set. This includes 13,563 upper-body,
7,151 lower-body, and 27,678 dress garment pairs. The
test set contains 5,400 pairs, evenly distributed across 1,800
pairs each for upper-body, lower-body, and dress garments.
All images have a resolution of 1024 x 768.

DeepFashion [29] dataset includes high resolution 52,712
person images in the fashion domain. Following Zhu et al.
[77], we split the dataset into training and test subsets with
101,966 and 8,570 pairs, respectively. Each pair includes
the same person in the same garment but with different
poses.

B. More Results for DressCode Dataset

To further validate our performance, we conduct separate
evaluations on different garment categories for the Dress-
Code dataset. In Tab. 5, results show that our method sig-
nificantly outperforms previous methods across all garment
categories. Specifically, for the upper body category, it
achieves an FID reductions of -2.33 (paired) and -0.91 (un-
paired); for the lower body category, -2.94 (paired) and -
2.55 (unpaired); and for dresses, -1.25 (paired) and -1.71
(unpaired).

C. More Ablation Studies

Unless stated otherwise, the ablation studies are conducted
on the VITON-HD dataset for the virtual try-on task, in
alignment with the main paper.

Effect of Leg,. To validate the effectiveness of Leffa loss,
we conduct ablation studies on the DressCode dataset for
virtual try-on and the DeepFashion dataset for pose transfer.
i) As shown in Tab. 6, our Leffa reduces FID by -1.58 in the

Method paired unpaired
FID| KID| SSIMt LPIPS| FID| KID|
upper body
FS-VTON [19] 1129  3.65 0.941 0.035 16.34 593
HR-VITON [26] 1536 527 0.916 0.071 16.82 570
GP-VTON [62] 7.38 0.74 0.945 0.039 12.21 1.19
LADI-VTON [35] 9.53 0.20 0.928 0.049 1326 2.67

DCI-VTON [15] 7.47 1.07 0.942 0.041 11.64 0.86
StableVITON [23] 9.94 0.12 0.937 0.039 - -
OOTDiffusion [63] 11.03  0.29 - - - -
Leffa (Ours) 5.05 0.02 0.949 0.021 10.73  0.77

lower body
FS-VTON [19] 11.65 3.82 0.934 0.053 22.43 9.81
HR-VITON [26] 11.41 3.20 0.937 0.045 16.39 431
GP-VTON [62] 1.73 0.71 0.938 0.042 16.70  2.89
LADI-VTON [35] 8.52 1.04 0.922 0.051 1480  3.13
DCI-VTON [15] 7.97 0.96 0.939 0.045 1545  1.60
Leffa (Ours) 4.79 0.05 0.941 0.024 12.25 1.66
dresses
FS-VTON [19] 13.04 444 0.888 0.070 20.95 8.96
HR-VITON [26] 16.82  4.89 0.865 0.113 18.81 541
GP-VTON [62] 7.44 0.32 0.881 0.073 12.64 1.83
LADI-VTON [35] 9.07 1.12 0.868 0.089 13.40  2.50
DCI-VTON [15] 8.48 1.08 0.887 0.070 1235  1.36
Leffa (Ours) 6.19 0.32 0.891 0.044 10.64  0.59

Table 5. Quantitative results comparison with other methods on
the DressCode dataset for virtual try-on. Our Leffa achieves state-
of-the-art results across all categories of garment.

paired unpaired
FID, KID| SSIMt LPIPS| FID| KID|

X 3.64 0.33 0.911 0.040 5.98 1.42
v 2.06 0.07 0.924 0.031 4.48 0.62

Method L[eﬂ‘a

Ours

Table 6. Ablation study on DressCode dataset for virtual try-on.
Our Leffa loss significantly improves model performance.

Method Lretta FID | SSIM 1 LPIPS |
X 572 0.744 0.153
= |4
Ours (512 x 352) v 4.23 0.755 0.119

Table 7. Ablation study on the DeepFashion dataset for pose trans-
fer. Our Leffa loss significantly improves model performance.

paired setting and -1.5 in the unpaired setting. ii) Tab. 7 fur-
ther shows an FID reduction of -1.49 on pose transfer task.
These results confirm that Leffa loss significantly improves
controllable person image generation, enhancing both ap-
pearance and pose control.

Qualitative impact of our Leffa loss Lie,. In Fig. 8, we
visualize attention maps with varying A, to assess its im-
pact on model training. The first row shows generated re-
sults with different g, values, with A, = O indicating
no Ly, Rows 2 to 5 highlight reference key regions at-
tended by the target query, marked by arrows of various
colors. Without Lleffa, attention is dispersed. Increasing
Alefra improves focus, guiding the query to correct regions.



Method paired unpaired
FID|, KID| SSIMt LPIPS| FID| KID|
Leffa (Ours) 4.54 0.05 0.899 0.048 8.52 0.32

Leffa wlo average A 6.02 0.74 0.863 0.072 9.78 0.98
Leffa w/o upsample 7  4.94 0.32 0.888 0.064 9.33 0.78

Table 8. Ablation study for the proposed Leffa loss.

Method paired unpaired
FID| KID| SSIMt LPIPS| FID| KID |
Our baseline 5.31 0.30 0.885 0.058 9.38 0.91

freeze Reference UNet ~ 6.42 0.77 0.863 0.066 10.63 1.32
+ CLIP visual feature 5.33 0.31 0.886 0.056 9.40 0.95
+ CLIP textual feature 5.37 0.40 0.876 0.060 9.45 0.98

Table 9. Ablation study for our diffusion-based baseline. Making
both the generative and reference UNets trainable is key to perfor-
mance improvement for our diffusion-based baseline.

However, when A, > 1073, the attention becomes overly
narrow and less accurate, hindering image generation.
Effect of averaging attention map across multi-head. In-
spired by [11], we average the attention maps across all
heads before computing the Leffa loss. As shown in Tab. 8
(Leffa w/o average A), computing the loss for each head in-
dividually degrades performance, emphasizing the role of
redundancy in attention maps for better generalization.
Effect of upsampling flow fields. To evaluate the impact
of upsampling the flow fields to image resolution, we ex-
periment with retaining their latent resolution for the Leffa,
requiring the ground truth image to be downsampled. This
resizing reduces detail, hindering accurate supervision. As
shown in Tab. 8 (Leffa w/o upsample F), not upsampling
the flow fields results in a performance drop, further sup-
porting our viewpoint.

D. Discussion

Why does our diffusion-based baseline perform com-
parably to state-of-the-art methods? Our baseline is
similar to existing virtual try-on and pose transfer meth-
ods [2, 7, 18, 63], but we find that complex designs are un-
necessary for strong performance. The key lies in making
both UNets in the dual architecture fully trainable, as freez-
ing one significantly degrades results. As shown in Tab. 9,
freezing the reference UNet (as done in Choi et al. [7]) leads
to a significant performance drop (FID reduction of -1.11/-
1.25 for the paired/unpaired settings). In contrast, adding
CLIP visual and textual features [7, 63] results in only a
slight performance decline. This highlights that the key to
improving the baseline lies in making both UNets trainable,
while adding more complex designs (e.g., add CLIP, textual
information) is unnecessary.

Why not add Ly, from the first training stage? At the
start of training, the attention maps are not well learned,
and applying our Leffa loss too early forces the target query
to prematurely attend to the reference key, hindering con-

vergence rather than accelerating it. Instead, introducing
our Leffa loss in a subsequent training stage significantly
enhances performance, demonstrating its ability to correct
inaccurate attention and guide the model toward more ef-
fective learning.

E. Limitation

While Leffa significantly improves controllable person im-
age generation in appearance and pose control, it has sev-
eral limitations. First, it requires multi-stage training with
the Leffa loss applied only in the final stage. In future work,
we aim to design a single-stage model to simplify the train-
ing process. Second, appearance control relies on garment
segmentation, which impacts performance when segmenta-
tion is inaccurate. We plan to develop a mask-free approach
to ensure high quality generation and preserve fine-grained
details without distortion. Third, our method struggles to
preserve extremely fine-grained details, such as small text,
due to the 8 resolution compression brought by the latent
encoder in the latent diffusion model. It is worth noting that
the issues mentioned above are not unique to our method
but are also present in other methods.

F. More Qualitative Comparison

To further demonstrate the effectiveness of our Leffa, we
conduct qualitative comparisons with other methods on
the VITON-HD, DressCode, and DeepFashion datasets, as
shown in Figs. 9-14. The results indicate that our Leffa not
only generates images with higher overall quality but also
significantly alleviates fine-grained detail distortion.



Aleffa = 0 Meffa = 107° Aleffa = 1073 Mleffa = 1071 Aeffa = 1

Figure 8. More visualizations of feature maps to assess the impact of Leffa loss. The third column is the optimal setting used in our paper.
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