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Figure 1. Qualitative comparison of novel view LiDAR point clouds on Waymo Open Dataset [8]. Our LiDAR-RT generates realistic
novel LiDAR views with accurate scene geometry and high-frequency details of dynamic objects.

In this supplementary material, we begin by presenting
additional implementation details about the evaluation
datasets, baseline methods and other technical descriptions
in Sec. 1. Then we display the further ablation studies
in Sec. 2 and comparison results on Waymo [8] and
KITTI-360 [5] datasets in Sec. 4. Subsequently, Sec. 3
showcases more applications of our method.

1. Implementation details
1.1. Evaluation datasets.

We evaluate our method on the Waymo Open Dataset [8]
and the KITTI-360 dataset [5]. Following previous works [9,
10, 14], we select the static and dynamic sequences from
the both datasets. The specific selected sequence names
and corresponding ids are listed in Tab. 1 and Tab. 2.

Table 1. The selected sequences from the KITTI-360 [5] dataset
for evaluation. S and D denote static and dynamic sequences,
respectively.

Scene name Type Sequence id Start frame End frame
ks1 S Seq 1538-1601 1538 1601
ks2 S Seq 1728-1791 1728 1791
ks3 S Seq 1908-1971 1908 1971
ks4 S Seq 3353-3415 3353 3415
kd1 D Seq 2351-2400 2351 2400
kd2 D Seq 4951-5000 4951 5000
kd3 D Seq 8121-8170 8121 8170
kd4 D Seq 10201-10250 10201 10250
kd5 D Seq 10751-10800 10751 10800
kd6 D Seq 11401-11450 11401 11450

Table 2. The selected sequences from the Waymo Open [8]
dataset for evaluation. S and D denote static and dynamic se-
quences, respectively.

Scene name Type Sequence id Start frame End frame
ws1 S Seg 113792 1 50
ws2 S Seg 106762 1 50
ws3 S Seg 177619 1 50
ws4 S Seg 117240 1 50
wd1 D Seg 108305 148 197
wd2 D Seg 132712 51 100
wd3 D Seg 100721 1 50
wd4 D Seg 105003 148 197

1.2. Baseline methods

LiDARsim and PCGen. LiDARsim [6] and PCGen [4]
are surfel-based reconstruction methods. Since the official
implementation is not publicly available, we re-implement
these two methods based on the codebase provided by
the LiDAR-NeRF [9] and follow the same experimental
settings on the KITTI-360 dataset [5].
LiDAR-NeRF. LiDAR-NeRF [9] is the first NeRF-based
method for LiDAR re-simulation, we directly adopt the of-
ficial implementation. For KITTI-360 dynamic sequences
and Waymo [8] scenes, we adjust the scene scales and Li-
DAR resolutions for fair comparison.
LiDAR4D. LiDAR4D [14] utilizes a 4D hybrid represen-
tation combined with multi-planar and grid features for Li-
DAR re-simulation. We adopt the official implementation
and follow the same experimental settings as their paper on
the KITTI-360 dataset. For the Waymo dataset, we prepro-
cess the dataset following the same procedure as LiDAR4D
and adjust the LiDAR resolutions. The ray-drop refinement
is also conducted for evaluation sequences.
DyNFL. DyNFL [10] leverages the bounding boxes of
moving objects to construct an editable neural field for
high-fidelity re-simulation of LiDAR scans. We follow the
original implementation based on NFL Studio [2] and the
settings for the Waymo dataset.

1.3. Gaussian Densification.

We adopt the adaptive control techniques from 3DGS [3]
during optimization, which includes operations such as
pruning, cloning, and splitting. However, unlike the vanilla
3DGS [3], which tracks screen-space gradients of particle
positions for cloning and splitting decisions, our approach
utilizes gradients in 3D world-space. This method is more
general and suitable in our ray tracing context since the
forward and backward passes are performed in 3D space.
Furthermore, to prevent object Gaussians from expanding
into occluded areas, we follow the strategy of [11] and
sample a set of points for each object model to form a
probability distribution function. During optimization,
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Figure 2. Qualitative results of ablation study on ray tracing with Gaussian variants.
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Figure 3. Qualitative results of ablation study on ray-drop modeling and refinement.

Gaussians associated with sampled points that fall outside
the bounding box are pruned to avoid excessive growth.

1.4. Calculation of the intersection and depth.

Given the rotation matrix R = [tu, tv, tw] and mean µ of a
2D Gaussian, the normal is calculated as n = tu × tv , then
the intersection distance t is determined from the equation:

(ro + trd − µ) · n = 0, (1)

The pixel depth is calculated via alpha blending (Eq. 2 and
Eq. 3 in main paper):

D =

K∑
i=1

Tiαiti, (2)

where ti denotes the ith intersection distance, K is the total
number of intersections.

Table 3. Quantitative results of ablation study on ray tracing
with Gaussian variants. The cell colors present the best and the
second best results, respectively.

Method FPS↑ RMSE↓ LPIPS↓ PSNR↑ CD↓ F-score↑
3D Gaussians 29 3.6716 0.1145 27.0976 0.3553 0.8899

2D Gaussians (Ours) 42 3.4671 0.1070 27.6755 0.1077 0.9255

Table 4. Quantitative results of ablation study on ray-drop
modeling and refinement. The cell colors present the best and
the second best results, respectively.

Method RMSE↓ LPIPS↓ PSNR↑ CD↓ F-score↑
w/o Rhit 4.5482 0.4503 25.2371 0.1592 0.9089

w/o Rrefine 4.4635 0.4338 25.3924 0.1485 0.9119
w/o Rspatial 3.7571 0.1480 26.9385 0.1247 0.9249

Ours 3.4671 0.1070 27.6755 0.1077 0.9255
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Figure 4. Qualitative comparison of LiDAR range images on Waymo Open Dataset [8] sequence seg-108305.

2. Ablation studies

2.1. Impact of ray tracing with Gaussian variants

Tab. 3 and Fig. 2 show the quantitative and qualitative
results of the ablation study on ray tracing with Gaussian
variants. We adopt 3D Gaussians [3] and 2D Gaussians [1]
as our Gaussian primitives for ray tracing separately. As
for 3D Gaussians, we construct the corresponding proxy
geometry as an icosahedron, proposed by 3DGRT [7].
The results demonstrate that the 2D Gaussians have a
slight advantage over 3D Gaussians in terms of rendering
quality and efficiency, which means our ray tracer is
compatible with various types of Gaussian primitives and
other extensions [12, 13] applied on Gaussian primitives
can be easily integrated into our framework.

2.2. Impact of ray-drop modeling and refinement

Tab. 4 and Fig. 3 present the quantitative and qualitative
results of our detailed ablation study on ray-drop modeling
and refinement. The variant labeled w/o Rhit models the
ray-drop using only a single logit, results in a significant
degradation of rendering quality. The variant w/o Rref
omits the refinement stage,consequently failing to capture

the sensor-level ray-drop patterns. Lastly, the w/o Rspatial
variant disregards the ray information (ro, rd) as UNet
inputs, leading to a loss of details on dynamic objects.

Table 5. Evaluation results of dynamic actors. The subscripts
int and depth denote the intensity and depth, respectively.

Method PSNRint SSIMint PSNRdepth SSIMdepth

DyNFL [48] 30.96 0.9608 23.35 0.9552
Ours 32.51 0.9711 22.98 0.9351

3. Applications

Object decomposition. Fig. 6 illustrates the object
decomposition results on Waymo dataset [8]. Our method
is capable of decomposing the foreground dynamic objects
clearly and produces high fidelity rendering results. We
evaluate the dynamic actors separately, the quantitative
results are shown in Tab. 5. Since our method based on
the explicit representation of dynamic objects, it achieves
better performance in terms of quality compared to the
implicit methods [10].
Semantic Segmentation. We show the semantic segmen-
tation results on the Waymo dataset [8] in Fig. 7. Similar
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Figure 5. Qualitative comparison of LiDAR range images on Waymo Open Dataset [8] sequence seg-132712.
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Figure 6. Decomposition results on Waymo dataset [8]. The
points are colorized by intensity values from blue(0) to red (1).

to Street Gaussians [11], our method can be easily extended
to render semantic maps by assigning additional semantic
attributes to the Gaussian primitives.
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Figure 7. Semantic segmentation results on Waymo dataset [8].
Our method is easily extended to render other feature maps such
as semantics.

4. Additional results

Novel LiDAR view synthesis on the Waymo dataset. We
provide additional qualitative results on the Waymo dataset [8]

with multiple baselines, as shown in Fig. 1, Fig. 5, and
Fig. 4. The dynamic vehicles are highlighted with colored
bounding boxes (□/□) for better visualization. Even on
the challenging Waymo [8] dataset with multiple moving
actors and the complex urban environment, our LiDAR-RT
still generates realistic novel LiDAR views with accurate
geometry and high-frequency details of dynamic objects. In
contrast, LiDAR-NeRF [9] struggles with dynamic objects
due to its lack of temporal modeling. LiDAR4D [14]
produces blurry and distorted results on this challenging
dataset. While DyNFL [10] renders plausible results, also
exhibits some artifacts around the dynamic objects due to
the inaccurate estimations of ray-drop.
Depth comparison with rasterization. To compare
the geometry accuracy of our ray tracing pipeline with
rasterization, we project the 3D point clouds to the camera
space and evaluate the depth map. The quantitative results
are shown in Tab. 6. Our ray tracing pipeline have better
geometric accuracy than rasterization.

Table 6. Depth comparison results with rasterization.

Method RMSE ↓ MedAE ↓ PSNR ↑
Rasterization 2.5304 0.4091 30.9522

Ours 2.3188 0.3761 31.1296
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