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S1. Downstream Policy Learning on RLBench

Existing visual pre-training works often assess the learned
representation in downstream environments using a single-
task setting. However, our work diverges from this stan-
dard by also evaluating the adapted pre-trained models on
the large-scale RLBench benchmark [5], where a single
language-conditioned policy is learned to complete various
tasks. Figure S1 shows examples of the 18 tasks and the
corresponding human instructions.

On RLBench, existing works [1–4, 7] usually develop
sophisticated models to model the semantics of the robot’s
multi-view observations and their correlations with the lan-
guage commands. For example, RVT [2] utilizes four at-
tention layers as the visual encoder to model intra-image
relations and four more attention layers to model image-
language correlations. In this work, we adopt the same
design as RVT, but replace the visual encoder (i.e., four intra-
image attention layers) with either an existing pre-trained
model or our adapted one. Additionally, we employ just
one attention layer to fuse the extracted image features and
language features. Since RVT predicts the end-effector’s
actions based on the features without down-sampling the
spatial dimension, we discard all spatial down-sampling op-
erations (e.g., max-pooling) in both the pre-trained models
and our adapted models. Please note that to validate the
effectiveness of our adaptation method, we freeze the visual
representation of the pre-trained model or our adapted model
while learning the downstream policy on RLBench.

S2. Real-world Experiments

Setups. For the real-world manipulation experiments, we
use a 7-DoF xArm robot arm equipped with an Inspire grip-
per. Visual observations are captured by an Orbbec Femto
Bolt (RGB-D) camera positioned in front of and to the upper
right of the robot arm. The positions of the robot arm, work-
ing area, and camera remain fixed during data collection and

policy testing. Additionally, we use a DJI Osmo Action 4
camera to record videos of the policy testing.
Data Collection. We design five different real-world tasks,
namely, put fruit in plate, stack cups, put tennis in mug,
hang mug, and put item in box. For each task, we collect 40
human teleoperation demonstrations for training. Figure S2
demonstrates some examples of the collected tasks. For each
demonstration, we manually move the robot arm and change
the states of the gripper (i.e., open or close) to complete
the target task. We record these operations and replay them
to record the demonstration. We simultaneously record the
robot arm end-effector state (i.e., positions in the x-axis,
y-axis, and z-axis, and rotations in roll, pitch, and yaw),
gripper state, and Orbbec camera RGB stream with an image
size of 1280×960.
Model Designs. We train our manipulation policy network
under a single-task setting, utilizing the ACT [8] framework
for policy learning1. In addition, following RVT [2] which
predicts the next key-action, we predict the following key-
actions of the end-effector. The visual backbone of the
network is replaced with either the pre-trained models or our
adapted models. During both training and testing, the RGB
images are resized to 320× 240.

Models learned params. pen relocate Averaged

R3M 0M (frozen:25M) 78.0 70.0 74.0

R3M-Align-L 1.6M 81.3 81.3 81.3 (+7.3)
R3M-Align-L w/o lang. 1.6M 79.3 80.7 80.0 (+6.0)

Table S1. Success rates of two tasks in Adroit. Removing the
language-guided feature enhancement will degrade the model’s
performance.

S3. Additional Ablations
In this work, our adaptation method uses task description
features as queries to better capture task-aware semantics

1We follow the implementation of https://github.com/Shaka-Labs/ACT.
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Figure S1. Examples of the 18 RLBench tasks (front view) with corresponding human instructions (sourced from [6]).

from video features. As shown at the bottom of Table S1, by
removing this operation, the adapted model, i.e., R3M-Align-
L w/o lang., will result in performance degradation. This
demonstrates that the language-guided feature enhancement
is effective in promoting human-robot semantic alignment.

In Table 3, we only used the robot data from the RH20T
subset we used to train R3M-PreT and R3M-ClS. For fair
comparisons, we train both R3M-PreT and R3M-ClS using
human and robot videos (i.e., the same amount of training
data of HR-Align). Table S2 shows that our R3M-Align still
outperforms R3M-PreT and R3M-ClS trained by full-data.
In addition, the R3M-PreT and R3M-ClS in Table 3 are full-
parameter fine-tuned, while our HR-Align is fine-tuned with
parameter-efficient Adapter. To ensure a fair comparison, we

instantiate R3M-PreT and R3M-ClS by inserting an adapter
into frozen R3M (i.e., the same amount of learnable param-
eters as our R3M-Align), and train them using both human
and robot data (i.e., the same amount of training data of HR-
Align), denoted as R3M-PreTA and R3M-ClSA. Table S3
shows that our R3M-Align still performs better. The above
shows the effectiveness of our HR-align method.

R3M-PreT R3M-ClS R3M-Align (Ours)
78.1 77.5 81.3

Table S2. Comparisons between models when training with full
data.
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Figure S2. Examples of the five real-world tasks are shown, with each row presenting an instance of the corresponding task. For each
demonstration, we provide visual observations at six different timestamps.

R3M-PreTA R3M-ClSA R3M-Align (Ours)
77.2 76.9 81.3

Table S3. Comparisons between models when training with
Adapters.
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