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1. Results on KITTI Test set

Method 3D Detection FPSEasy Mod. Hard mAP

PointPillars[3] 51.45 41.92 38.89 44.09 63

TANet[6] 53.72 44.34 40.49 46.18 29

PiFeNet [4] 56.39 46.71 42.71 48.60 26

PH-PointPillars (Ours) 55.79 45.85 42.15 47.93 69

Table 1. Performance of specific PFE modules on the KITTI test
set in AP3D (R40) for Pedestrian.

Comparison with Specific PFE Methods on KITTI
test set. Existing methods that focus solely on pillar en-
coding include TANet [6] and PiFeNet [4], where PiFeNet
is tailored specifically for pedestrian detection. To enable
a fair comparison, we report the pedestrian category per-
formance on the KITTI test set. We follow the experi-
ment setting of PiFeNet, where the training set is further
split into training and validating set with a ratio of 85:15.
We select PointPillars as our baseline and only replaced its
pillar feature encoding module with our PillarHist to con-
struct PH-PointPillars for comparison. As shown in Table
1, our method achieves a 3.84 AP improvement over the
baseline (PointPillars) and is 1.75 AP higher than TANet.
Compared to PiFeNet, PH-PointPillars achieve comparable
performance at 2.7 times the inference speed of PiFeNet,
which confirms the effectiveness and efficiency of our Pil-
larHist design. For PiFeNet, although our method’s per-
formance was slightly lower (0.73 AP lower), we believe
this is because we didn’t selecting a better backbone and
bounding box regression structure design due to we focuse
on pillar feature encoding design. In contrast, the TANet
and PiFeNet in Table 1, in addition to their TA module and
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PAA module design, they also include Coarse-to-Fine Re-
gression (CFR) and Mini-BiFP design for feature encoding
and bounding box regression, those extra designs have been
shown to be effective than the PointPillar backbone in their
paper, respectively.

2. More Ablation Study
Generalization of PillarHist on nuScenes val set. Here,
we evaluate our PillarHist’s generalization on different
pillar-based baselins in nuScenes val set. We selected three
representative pillar-based detectors: PointPillars [3], CP-
Pillar [12], and PillarNet [9]. In detail, we replace the raw
PFE module in each baseline model with our proposed Pil-
larHist, resulting in PH-PointPillars, PH-CP-Pillar, and PH-
PillarNet, respectively. As shown in Table 2, the results
demonstrate the generalizability of proposed PillarHist, as
we observe performance improvements of 1.7 NDS, 1.4
NDS, and 1.6 NDS on the three differnet baselin models,
respectively. These results highlight the effectiveness and
broad applicability of our PillarHist module in enhancing
the representation power of pillar-based 3D object detec-
tors, leading to consistent performance gains across differ-
ent baseline architectures.

Notably, On the nuScenes dataset, the nuScenes detec-
tion score (NDS) is the primary evaluation metric. As
shown in Table 2, our proposed method achieves consis-
tent performance gains on the NDS across different pillar-
based 3D object detectors. The key contribution that leads
to the NDS improvement is the significant reduction in the
Mean Average Orientation Error (mAOE) and Mean Aver-
age Velocity Error (mAVE), indicating that our method is
effective in mitigating the orientation and velocity estima-
tion errors of the detected objects. The improvements can
be attributed to the enhanced ability of our PillarHist en-
coder to capture the spatial and structural information of the
point cloud within each pillar. The performance gains on
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Models NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
PointPillars [3] 52.1 37.4 0.374 0.266 0.407 0.410 0.202
PH-PointPillars 53.8 (+1.7) 38.8 (+1.4) 0.366 0.262 0.387 0.337 0.204

CP-Pillar[12] 56.4 44.9 0.336 0.266 0.532 0.289 0.189
PH-CP-Pillar 57.8 (+1.4) 45.8 (+0.9) 0.330 0.264 0.514 0.215 0.188

PillarNet[9] 61.4 52.6 0.296 0.262 0.502 0.250 0.186
PH-PillarNet 63.0 (+1.6) 52.7 (+0.1) 0.296 0.256 0.376 0.217 0.182

Table 2. Generalization and quantization performance comparison on nuScene val set.

the NDS metric, which reflects the overall detection quality,
demonstrate the effectiveness of our proposed PillarHist in
improving the robustness and accuracy of pillar-based 3D
object detectors on the nuScenes benchmark.

Methods Car 3DR40 Ped 3DR40

mAP Easy Mod. Hard mAP Easy Mod. Hard

PointPillars [3] 79.98 87.08 77.90 74.97 49.41 54.71 49.01 44.52
PH-PointPillars 81.41 88.80 79.13 76.30 51.07 57.45 50.42 45.36

⇑ 1.43 1.72 1.23 1.33 1.66 2.74 1.41 0.84
CP-Pillar [12] 77.01 84.70 74.46 71.89 42.91 45.74 42.93 39.76
PH-CP-Pillar 77.85 85.62 75.17 72.77 44.93 49.10 44.99 40.72

⇑ 0.84 0.92 0.71 0.88 2.02 3.36 2.06 0.96
PillarNet [9] 80.90 87.21 79.05 76.44 44.51 47.83 44.80 41.01

PH-PillarNet 81.60 88.71 79.05 77.03 46.10 49.75 45.96 42.61
⇑ 0.70 1.50 0.00 0.59 1.62 1.92 1.16 1.60

Table 3. Comparison with the Pillar-based methods on the KITTI
val set.

Generalization of PillarHist on KITTI val set. As
shown in Table 3, when compared to PointPillars [3],
CenterPoint-Pillar [12], and PillarNet [9] methods, our
method achieves mAP improvements of 1.43, 0.84, and
0.70 for the vehicle class, respectively. For the pedestrian
category, PillarHist achieves even larger performance gains
of 1.66, 2.02, and 1.62 points on mAP, respectively. These
improvements indicate that our histogram-based point fea-
ture encoder can generate more informative features to en-
hance object detection performance.

bins Car 3DR40 Ped 3DR40

mAP Easy Mod. Hard mAP Easy Mod. Hard

s=16 80.27 87.57 78.15 75.10 45.79 50.35 45.62 41.41
s=32 80.49 87.98 78.28 75.22 49.79 55.35 49.48 44.56
s=48 81.24 89.31 78.69 75.74 50.08 55.42 49.91 44.93
s=64 81.41 88.80 79.13 76.30 51.07 57.45 50.42 45.36
s=80 80.49 87.53 78.44 75.50 49.96 55.82 49.68 44.38

Table 4. Ablation study on the number of bins s on the KITTI val
set in AP3D (R40).

The Number of Bins Along Height Dimension. Here,
we conduct an ablation study on the number of bins s in
the height dimension. We take PointPillars as our base-
line. Notably, PointPillars limits the maximum number of
points as 32 in each pillar. We vary the number of bins
from 16 to 80, and the results are presented in Table 4. As
the number of bins increased, the performance of the model

improved steadily. However, the performance does not ex-
hibit a monotonic improvement trend and exhibit a degra-
dation when the number of bins was increased to 80. Al-
though larger number of bins can better encode discrimina-
tive features in the height dimension, the performance sat-
urates when the number of bins becomes excessively large.
Based on these experimental results, we selected a value of
64 for the number of bins.

3. Quantization Preliminaries
Quantization for tensor. The quantization operation is
defined as the mapping of a floating-point (FP) value x
(weights or activations) to an integer value xint according
to the following equation:

xint = clamp(⌊x
s
⌉+ z, qmin, qmax) (1)

where ⌊·⌉ is the rounding-to-nearest operator, which results
in the rounding error ∆r. The function clamp(·) clips the
values that lie outside of the integer range [qmin, qmax],
incurring a clipping error ∆c. xint represents the quan-
tized integer value. z is zero-point. s denotes the quan-
tization scale factor, which reflects the proportional rela-
tionship between FP values and integers. [qmin, qmax] is
the quantization range determined by the bit-width b. Here,
we adopt uniform signed symmetric quantization, as it is
the most widely used in TensorRT [7] and brings signif-
icant acceleration effect. Therefore, qmin = −2b−1 and
qmax = 2b−1−1. Nonuniform quantization [2] is challeng-
ing to deploy on hardware, so we disregard it in this work.
Generally, weights can be quantized without any need for
calibration data. Therefore, the quantization of weights is
commonly solved using grid search or analytical approxi-
mations with closed-form solution [8] to minimize the mean
squared error (MSE) in PTQ. However, activation quantiza-
tion is input-dependent, so often requires a few batches of
calibration data for the estimation of the dynamic ranges to
converge. To approximate the real-valued input x, we per-
form the de-quantization step:

x̂ = (xint − z) · s (2)

where x̂ is the de-quantized FP value with an error that is
introduced during the quantization process.



Quantization range. If we want to reduce clipping er-
ror ∆c, we can increase the quantization scale factor s to
expand the quantization range. However, increasing s leads
to increased rounding error ∆r because ∆r lies in the range[
− s

2 ,
s
2

]
. Therefore, the key problem is how to choose the

quantization range (xmin, xmax) to achieve the right trade-
off between clipping and rounding error. Specifically, when
we set fixed bit-width b, the quantization scale factor s is
determined by the quantization range:

s = (xmax − xmin) /
(
2b − 1

)
(3)

Max-min calibration. We can define the quantization
range as:

xmax = max(|x|), xmin = −xmax (4)

to cover the whole dynamic range of the floating-point value
x. This leads to no clipping error. However, this approach is
sensitive to outliers as strong outliers may cause excessive
rounding errors.

Quantization for network. Following previous meth-
ods [5, 14], for a float model with N layer, we primarily
focus on the quantization of convolutional layers or linear
layers, which mainly involves the handling of weights and
activations. For a given layer Li, we initially execute quan-
tization operations on its weight and input tensor, as illus-
trated in Eq 7 and 2, yielding Ŵi and Îi. Consequently, the
quantized output of this layer can be expressed as follows.

Âi = f(BN(Îi ⊛ Ŵi) (5)

where ⊛ denotes the convolution operator, BN(·) is the
Batch-Normalization procedure, and f(·) is the activation
function. Quantization works generally take into account
the convolution, Batch Normalization (BN), and activation
layers.

Weight/Activations Quantization. Specifically, for a
weight or activation tensor X , firstly obtain the xmax and
xmin according to Eq.4, and calculate the initial quantiza-
tion parameter s0 following Eq. 8. Then linearly divide
the interval [αs0, βs0] into T candidate bins, denoted as
{st}Tt=1. α, β and T are designed to control the search
range and granularity. Finally, search {st}Tt=1 to find the
optimal sopt that minimizes the quantization error.

argminst ∥(X − X̂(sl))∥2F (6)

∥ · ∥2F is the Frobenius norm (MSE Loss).
Gird Search for Weight and Activation Quantization

Scale. For a weight or activation tensor X , we can get their
initial quantization scale factor using the following equa-
tion:

x̂ = (clamp(⌊x
s
⌉+ z, qmin, qmax)− z) · s (7)

Algorithm 1: Grid search

1 Input: the input of full precision tensor X ,
bit-width b and T bins.

2 Output: scale factor sopt with
min(∥(X − X̂(sl))∥2F ).
1: using xmax = max(|x|) get max value of tensor X
2: set range = xmax, cbest = 100
3: set vmin = xmin and vmax = xmax

4: for i in range(1, T ) do
5: threshold = range/T/i
6: xmin = −threshold, xmax = threshold
7: get scale st with xmin and xmax using Eq 8
8: input the quantized value x̂ and FP value x

using Eq 7 to get score c
9: update vmin and vmax when c < cbest and

update cbest = c10:
11: get vmin and vmax with the minimal score c
12: get final scale sopt with vmin and vmax using Eq 8

scale sopt

s = (xmax − xmin) /
(
2b − 1

)
(8)

argminst ∥(X − X̂(sl))∥2F (9)

∥ · ∥2F is the Frobenius norm (MSE Loss). Refer to ap-
pendix for more details about grid search. Then linearly
divide the interval [αs0, βs0] into T candidate bins, denoted
as {st}Tt=1. α, β and T are designed to control the search
range and granularity. Finally, search {st}Tt=1 to find the
optimal sopt that minimizes the quantization error, the grid
search method in Algorithm 2.

Naive Post-Training Quantization Algorithm. The
naive post-training quantization algorithm are as follows,
the grid search method in Algorithm 2.

4. Dataset and Implementation Details
KITTI Dataset. The KITTI dataset uses a LiDAR with
64 channels. The KITTI has 7481 training samples and
7518 test samples. The training samples are split into a
train set with 3,717 samples and a val set with 3,769 sam-
ples following the common setting [3, 11]. The detected
boxes are classified into three subsets: “Easy”, “Moder-
ate” and “Hard” based on the levels of difficulty. We report
Mean Average Precision (mAP).

nuScens Dataset. The nuScenes [1] dataset contains 700
training scenes, 150 val scenes and 150 test scenes. Each
frame is generated approximately 30K points by a 32 chan-
nels LiDAR sampled with 20Hz. The training, validation
and testing set have 28K, 6K and 6K annotated keyframes,
respectively, It contains 10 categories in total. Its main



Algorithm 2: PillarHist Naive Post-Training Quan-
tization

1 Input: Pretrained FP model with N layers;
Calibration dataset Dc.

2 Output: quantization parameters of both activation
and weight in network, i.e., weight scale sw,
weight zero-point zw, activation scale sa and
activation zero-point za.
1: Get only weight quantization parameters sw and zw to

minimize Eq 9 in every layer using the grid search
algorithm; for Ln = {Li|i = 1, 2, ...N} do
2: Optimize only activation quantization

parameters sa and za to minimize Eq 9 in
layer Li using the grid search algorithm;

3: Quantize layer Li with the quantization
parameters sw, zw, sa, and za;4:

ranking metric is the nuScenes detection score (NDS). The
Mean Average Precision (mAP) was also used based on dis-
tances between the centers of the predictions and ground-
truths on the bird-eye view at thresholds 0.5, 1, 2, and 4m.

Waymo Open Dataset. The Waymo Open Dataset[10]
contains 1150 sequences in total, 798 for training, 202 for
validation and 150 for test. Each sequence is sampled at
10Hz with a 64 channels LiDAR containing 6.1M vehicle,
2.8M pedestrian, and 67k cyclist boxes. Each frame cov-
ers a scene with a size of 150m×150m. The official eval-
uation tools evaluated the methods in two difficulty levels:
LEVEL1 for boxes with more than five LiDAR points, and
LEVEL2 for boxes with at least one LiDAR point.

Training Details Following previous methods [12, 13],
we utilize the Adam optimizer with one-cycle learning rate
policy. The initial learning rate is set to 10e-4 during train-
ing. The learning rate gradually increases to 0.001 in the
first 50% epochs and then gradually decreases to 10e-5 for
the remaining training process. We set the weight decay to
0.01 and the momentum to a range of 0.85 to 0.95, For data
augmentation, the whole point cloud is flipped randomly
along the X axis, randomly is rotated along the Z axis in
the range [−π/4, π/4], and globally is scaled by a random
factor sampled from [0.95, 1.05]. Regarding the pillar size,
network architecture and loss function. Our experiments are
executed on 4 Nvidia Tesla V100 GPUs.
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