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6. Detailed Methods

6.1. Survival Analysis

For k-th patient, we can model the survival and hazard func-

tions given I(k) = (P (k), G(k), c(k), t(k)), where P (k) rep-

resents the set of whole slide images, G(k) denotes the ge-

nomic profiles, c(k) ∈ {0, 1} indicates the right uncensor-

ship status, and t(k) ∈ R
+ is the overall survival time (in

months). The hazard function f
(k)
hazard(T = t|T ≥ t, I(k))

measures the instantaneous risk of death at time point k for

the k-th patient, which can be defined as:

f
(k)
hazard(T = t) = lim

∂t→0

P (t ≤ T ≤ t+ ∂t|T ≥ t)

∂t
(16)

The survival function f
(k)
surv(T ≥ t, I(k) quantifies the prob-

ability of surviving after a specified time t, which can be

estimated via the cumulative hazard function f
(k)
hazard(T =

t|T ≥ t, I(k)) as follows:

fsurv(T ≥ t, I(k)) =
∏t

u=1
(1−fhazard(T = u|T ≥ u, I(k)))

(17)

The most common method for estimating the hazard func-

tion is the Cox Proportional Hazards (CoxPH) model, in

which fhazard can be parameterized as:

λ(t|x) = λ0(t)e
θX (18)

where λ0(t) represents the baseline hazard function, θ rep-

resents the vector of coefficients for the covariates.

6.2. Conditional VAE

The conditional variational autoencoder (CVAE) [32] per-

forms the variational inference with condition from the prior

latent distribution. In our case, the goal is to generate target

genomic features X given the pathological features Y . The

variational lower bound of CVAE can be derived as follows:

log pθ(X|Y ) =

∫
z

dzqφ(z|X,Y )log pθ(X|Y )

=

∫
z

dzqφ(z|X,Y )log pθ(X|Y )

= Eqφ(z|X,Y ) log pθ(X|Y )

= Eqφ(z|X,Y ) log
pθ(X,Y, z)

pθ(z|X,Y )pθ(Y )

= Eqφ(z|X,Y ) log
qφ(z|X,Y )

pθ(z|X,Y )

pθ(X,Y, z)

qφ(z|X,Y )pθ(Y )

= KL(qφ(z|X,Y )||pθ(z|X,Y )) + Eqφ(z|X,Y ) log
pθ(X,Y, z)

qφ(z|X,Y )pθ(Y )

≥ Eqφ(z|X,Y ) log
pθ(X,Y, z)

qφ(z|X,Y )pθ(Y )

= Eqφ(z|X,Y ) log
pθ(X|z, Y )pθ(z|Y )pθ(Y )

qφ(z|X,Y )pθ(Y )

= Eqφ(z|X,Y ) log pθ(X|z, Y )−KL(qφ(z|X,Y )||pθ(Y ))
(19)

6.3. Pathological VIB Transformer

The goal of VIB [2] is to learn a new representation zY
compressed from the original pathological information Y
while conserving information about the target T . To learn

the minimal sufficient representation zY , we can formulate

it as follows (for clarity, we employ Z as an alternative for

zY in this section):

argmax
Z

I(Z, T )− βI(Z, Y ) (20)

where I(·) represents mutual information (MI). The hyper-

parameter β ≥ 0 controls the trade-off between compres-

sion and prediction, determining the strength of the bot-

tleneck. However, the computation of MI is intractable,

VIB [2] approximates the computation of IB by using vari-

ational inference.

We firstly suppose that the joint distribution p(Y, T, Z)
can be calculated via:

p(Y, T, Z) = p(Z|Y, T )p(T |Y )p(Y ) = p(Z|Y )p(T |Y )p(Y )
(21)

where we assume that p(Z|Y, T ) = p(Z|Y ) follows the

Markov chain T ↔ Y ↔ Z. Then, we can reformulate the



terms I(Z, T ) and I(Z, Y ) as follows:

I(Z, T ) =

∫
dt dz p(z, t) log

p(z, t)

p(z)p(t)

=

∫
dt dz p(z, t) log

p(t|z)
p(z)

(22)

I(Z, Y ) =

∫
dy dz p(z, y) log

p(z, y)

p(z)p(y)

=

∫
dy dz p(z, y) log

p(z|y)
p(z)

(23)

Then, we can derive

I(Z, T ) =

∫
dtdzp(z, t) log

p(t|z)
p(t)

=

∫
dtdzp(z, t) log

q(t|z)
p(t)

p(t|z)
q(t|z)

=

∫
dtdzp(z, t) log

q(t|z)
p(t)

+KL(p(t|z)||q(t|z))

≥
∫

dtdzp(z, t) log
q(t|z)
p(t)

=

∫
dtdzp(z, t) log q(t|z)−

∫
dtdzp(z, t) log p(t)

=

∫
dtdzp(z, t) log q(t|z) +H(t)

(24)

Notice that H(t) is independent in our optimization proce-

dure and thus we can derive:

I(Z, T ) ≥
∫

dtdzp(z, t) log q(t|z)

=

∫
dydtdzp(y)p(z|y)p(t|y) log q(t|z)

(25)

For I(Z, Y ), we have

I(Z, Y ) =

∫
dydzp(z, y) log

p(y|z)
p(y)

=

∫
dtdzp(z, y) log

r(z)

p(z)

p(z|y)
r(z)

= −KL(p(z)||r(z)) +
∫

dydzp(z, y) log
p(z|y)
r(z)

≤
∫

dydzp(z, y) log
p(z|y)
r(z)

=

∫
dydzp(y)p(z|y) log p(z|y)

r(z)
(26)

By the combination of Eq. (25) and Eq. (26), we have

I(Z, T )− βI(Z, Y ) ≥
∫

dydtdzp(y)p(z|y)p(t|y) log q(t|z)

−β

∫
dydzp(y)p(z|y) log p(z|y)

r(z)

≈
∫

dzp(z|y) log q(t|z)− βp(z|y) log p(z|y)
r(z)
(27)

Finally, the objective function for VIB can be denoted as:

LIB = Ez∼p(z|y)[− log q(t|z)]
+βKL(p(z|y)||r(z)) (28)

where q(t|z) is the variational approximation to p(t|z), r(z)
is the variational approximation of p(z) and p(z|y)is the

posterior distribution over z.

6.4. Conditional Latent Differentiation VAE

6.4.1 Latent Differentiation VAE

In general, we assume that the N functional genomic fea-

tures x1, x2, ..., xN are conditionally independent given a

latent variable zX . Consequently, the objective of train-

ing this VAE is to maximize the likelihood of the data

p(X) = p(x1, x2,, ..., xN ), which can be optimized using

an evidence lower bound (ELBO), and the loss function can

be defined as:

LELBO = −Eqφ(zX |x)[
N∑
i=1

log pθ(xi|zX)]

+βKL[qφ(zX |X), p(zX)]

(29)

However, it is difficult to generate different functional

genomic features xi directly from the genomic posterior

p(z|x1, x2, ..., xN ) as the genomic posterior will affect the

diversity of the generated genomic features [40]. To ad-

dress this, we introduce the function-specific posteriors

p(zi|X) by applying a latent differentiation process that

transforms the genomic posterior into function-specific pos-

teriors. Therefore, we can establish a shared latent space on

all genomic features as well as refining the function-specific

posteriors for each genomic category.

Specifically, we assign a unique latent variable zi to each

xi and assume that xi, zi and zX satisfy the Markov chain

xi ↔ zi ↔ zX . Due to the one-to-one correspondence, we

have p(xi|zX) = p(xi, zi|zX). Then the generative model

is with the following form:

p(x1, z1, x2, z2, ..., xN , zN , zX) = p(x1, x2, ..., xN , z)

= p(zX)p(x1|zX)p(x2|zX)...p(xN |zX)
(30)

We assume that p(zi|X) = EzX∼p(zX |X)p(zi|zX), indi-

cating that p(zi|X) can be obtained by transforming from



the genomic posterior. Since p(zX |X) is variationally ap-

proximated by q(zX |X), our function-specific posterior can

be derived directly from the variational genomic poste-

rior, avoiding the need for an independent variational ap-

proximation of q(zX |X). Therefore, we have p(zi|X) ≈
EzX∼q(zX |X)p(zi|zX). We model p(zi|zX) as a process

that maps p(zX) to p(zi), which can be presented as

p(zi|zX) = N (zi|ψμ
i (zX), ψΣ

i (zX)),where ψi serves as an

MLP mapper. In practice, each function-specific posterior

should also approximate prior distribution r(zi), which can

be achieved by applying the Kullback-Leibler divergence.

In the process for variational inference, we sample

the genomic latent variable zX from the prior p(zX) ∼
N (0, I). Then, the joint distribution p(xi, zi, zX) can be

factored as follows:

p(xi, zi, zX) = p(xi|zi, zX)p(zi|zX)p(zX)

= p(xi|zi)p(zi|zX)p(zX)
(31)

Here, p(xi|zi, zX) = p(xi|zi) follows the Markov chain.

Then the log pθ(xi|zX) in Eq. (6) can be reformulated as:

log p(xi|zX) = log p(xi, zi|zX) = log p(xi|zi)p(zi|zX)
(32)

By combining the above analysis, the loss function for LD-

VAE is denoted as:

LELBO = −Eqφ(zX |X)[
N∑
i=1

log pθ(xi|zi)p(zi|zX)]

+β(
N∑
i=1

KL[qφ(zi|X)||p(zi)] +KL[qφ(zX |X)||p(zX)])

(33)

The architecture of LD-VAE. We show the detailed ar-

chitecture of LD-VAE in Fig. 3(b). Specifically, we em-

ploy a transformer similar to the VIB-Trans as the encoder.

The transformer encoder takes the bag of genomic feature

X = {X1, X2, ..., XN} as input with two additional learn-

able tokens, μtoken
X and Σtoken

X , and outputs the parameters

μX and ΣX of the genomic posterior distribution in LD-

VAE. For the reconstruction of genomic features, we set

specific decoders for the genomic features with diverse bio-

logical functions. The specific decoder first uses the mapper

ψi to generate the function-specific posterior from the ge-

nomic posterior, and then obtain the specific latent variable

zi with the re-parametrization trick to generate the genomic

features xi by the reconstruction net θi.

6.4.2 Joint Pathology-Genomics Distribution Learning

One critical problem for optimizing Eq. (9) is to estimate the

joint posterior q(z|X,Y ). Following the study in [40], we

assume that X ,Y are conditionally independent given the

genomic latent variable z, i.e., p(X,Y |z) = p(X|z)p(Y |z).
Hence, the joint posterior can be approximated by the prod-

uct of the genomics and pathology posteriors with the form:

p(z|X,Y ) =
p(X,Y |z)p(z)

p(X,Y )

=
p(z)

p(X,Y )
p(X|z)p(Y |z)

=
p(z)

p(X,Y )

p(z|X)p(X)

p(z)

p(z|Y )p(Y )

p(z)

=
p(z|X)p(z|Y )

p(z)

p(X)p(Y )

p(z)

∝ p(z|X)p(z|Y )

p(z)

(34)

By the approximation of p(z|X) ≡ q̃(z|X)p(z), p(z|Y ) ≡
q̃(z|Y )p(z), where q̃(·) is the underlying inference network,

we can derive:

p(z|X,Y ) ∝ p(z|X)p(z|Y )

p(z)

≈ q̃(z|X)q̃(z|Y )p(z) ≡ q(z|X,Y )

(35)

Finally, we can use the product-of-experts (PoE) that factor-

izes the joint posterior q(z|X,Y ) into marginal posteriors

q̃(z|X) and q̃(z|Y ).

7. Additional Experiments
7.1. Evaluation and Implementation

Evaluation. We employ 5-fold cross-validation for each

dataset. To evaluate the model’s performance, we calculate

the concordance index (C-index) [14] and its standard devi-

ation (std), which measure the model’s ability to correctly

rank pairs of individuals based on their predicted survival

times. Additionally, we visualize the Kaplan-Meier (KM)

[19] survival curves to illustrate the survival probability of

different risk groups predicted by our model. To statistically

validate the separation between risk groups, we perform the

Log-rank test [27], which determines whether the survival

differences between groups are statistically significant.

Implementation. For each WSI, we crop it into non-

overlapping 224×224 patches at 10×magnification level.

Then, a pre-trained Swin Transformer encoder (i.e.,
CTransPath) serves as the pathological encoder ϕp, which

is pre-trained using contrastive learning on over 15 million

pan-cancer histopathology patches [38, 39]. For genomic

data, we organizes genes into the aforementioned N=6 cate-

gories based on similar biological functional impact, which

are obtained from [23]. We use the SNN [20] as the ge-

nomic encoder ϕg . Our model is implemented in Python 3.9
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Figure 6. Kaplan-Meier Analysis of predicted high-risk (red) and low-risk (green) groups on five cancer datasets under both complete

modality (top) and missing modality (bottom) scenarios. Shaded areas refer to the confidence intervals.

Table 4. Comparisons of C-Index (mean ± std) with different methods for the representation of WSIs over five datasets. For each method,

results are reported under both complete modality and missing modality scenarios.

Model Missing BLCA BRCA GBMLGG LUAD UCEC Overall

ABMIL
0.651 ± 0.035 0.685 ± 0.020 0.833 ± 0.058 0.646 ± 0.048 0.691 ± 0.053 0.701

� 0.616 ± 0.024 0.619 ± 0.019 0.820 ± 0.040 0.623 ± 0.035 0.647 ± 0.037 0.665

CLAM-SM
0.651 ± 0.035 0.685 ± 0.020 0.833 ± 0.058 0.646 ± 0.048 0.691 ± 0.053 0.701

� 0.616 ± 0.024 0.619 ± 0.019 0.820 ± 0.040 0.623 ± 0.035 0.647 ± 0.037 0.665

CLAM-MB
0.651 ± 0.035 0.685 ± 0.020 0.833 ± 0.058 0.646 ± 0.048 0.691 ± 0.053 0.701

� 0.616 ± 0.024 0.619 ± 0.019 0.820 ± 0.040 0.623 ± 0.035 0.647 ± 0.037 0.665

TransMIL
0.651 ± 0.035 0.685 ± 0.020 0.833 ± 0.058 0.646 ± 0.048 0.691 ± 0.053 0.701

� 0.616 ± 0.024 0.619 ± 0.019 0.820 ± 0.040 0.623 ± 0.035 0.647 ± 0.037 0.665

VIB-Trans
0.686 ± 0.035 0.680 ± 0.030 0.849 ± 0.017 0.676 ±0.015 0.703 ± 0.069 0.719

� 0.649 ± 0.040 0.641 ± 0.012 0.821 ± 0.021 0.628 ± 0.008 0.681 ± 0.044 0.684

with Pytorch library and trained with four NVIDIA 3090

GPUs. During training, we set the hyperparameter α to 0.1.

The hyperparameter β for Kullback-Leibler divergence is

annealed using a cosine schedule, gradually increasing to

1, thereby forming a valid lower bound on the evidence.

We adopt Adam optimizer with the initial learning rate of

2×10−4 and weight decay of 1×10−5. Following the set-

ting of [5], we use the batch size of 1 for WSIs with 32

gradient accumulation steps, and all experiments are trained

for 30 epoches. We train our methods on the complete data

and test the performance on both the complete modality and

missing modality (i.e., genomic data).

7.2. Additional Results

Additional Results for Patient Stratification. We

present additional results for patient stratification using

competing methods, including those designed for integrat-

ing multi-modal data (e.g., MCAT, SurvPath) and handling

missing genomic data (e.g., Shaspace), as shown in Fig. 6.

Compared to these methods, our approach (shown in Fig. 4)

achieves clearer separation between low-risk and high-risk

patients across all datasets. In the Logrank test, our method

can still consistently yield a lower P-value. These results

highlight the robustness and effectiveness of our approach

in accurately distinguishing patient risk groups.



Table 5. Ablation study assessing C-index (mean ± std) over five datasets. For each variant, results are reported under both complete

modality and missing modality scenarios.

Variants Missing BLCA BRCA GBMLGG LUAD UCEC Overall

w/o μtoken and Σtoken 0.675 ± 0.063 0.674 ± 0.033 0.839 ± 0.035 0.668 ± 0.039 0.682 ± 0.081 0.708

� 0.641 ± 0.040 0.644 ± 0.012 0.811 ± 0.027 0.629 ± 0.022 0.643 ± 0.036 0.674

Ours
0.686 ± 0.035 0.680 ± 0.030 0.849 ± 0.017 0.676 ±0.015 0.703 ± 0.069 0.719

� 0.649 ± 0.040 0.641 ± 0.012 0.821 ± 0.021 0.628 ± 0.008 0.681 ± 0.044 0.684

BLCA BRCA GBMLGG LUAD UCEC

Figure 7. The performance of our method under different settings of missing rate η.

Figure 8. The effect of hyperparameter α over five cancer datasets.

Representation of WSIs. We conduct additional experi-

ments with different methods to represent WSIs in place of

VIB-Trans, with the results summarized in Tab. 4. We can

observe that VIB-Trans consistently outperforms compet-

ing methods across all datasets, demonstrating its effective-

ness of representing WSIs.

Settings of missing rate for genomic data. We conduct

further experiments to analyze the robustness of our pro-

posed method against different missing rates for genomic

data, and the results are shwon in Fig. 7. We observe that

the increase of missing rate η comes with inferior predic-

tion results. However, even at high missing rates of 90%

or even 100%, our method still outperforms the best uni-

modal approach basing on pathology images, indicating the

effectiveness of our approach.

Settings of hyperparameters for Loss Function. We

conduct ablation studies to evaluate the impact of the hyper-

parameter α in Eq. (13). As shown in Fig. 8, model perfor-

mance peaks when α is 0.1, hence we set 0.1 as the optimal

value of α.

Impact of μtoken, σtoken. We introduce the μtoken and

Σtokenin Trans-VIB to better learn the latent posterior of

VIB by modeling the interaction between pairwise patches.

For ablation, we use two linear layers following the trans-

former encoder to obtain the μ and Σ. As shown in Tab. 5,

the inclusion of μtoken and Σtoken achieves superior per-

formance, indicating the effectiveness of this design.

7.3. More Comparisons with State-of-the-Arts

We also conduct additional experiments with pathologi-

cal features extracted by a ResNet50 encoder pre-trained

on ImageNet, and report the results with comparisons to

SOTA methods reported in Tabs. 6 and 7. The results in

Tab. 6 demonstrate that our method consistently achieves

the best overall performance across both unimodal and mul-

timodal approaches. In the missing modality setting, results

in Tab. 7 show that our method can effectively handle miss-

ing genomic data and outperform the comparison methods.

7.4. More Visualizations

We provide more visualizations that compare the co-

attention weights calculated from the ground truth and gen-

erated genomic feature in Figs. 9 to 13.



Table 6. Comparisons of C-index (mean ± std) with SOTA methods over five cancer datasets by using ResNet50 encoder. g. and h. refer

to genomic modality and histological modality, respectively. The best results and the second-best results are highlighted in bold and in

underline.

Model Modality BLCA BRCA GBMLGG LUAD UCEC Overall
(N=373) (N=957) (N=571) (N=452) (N=480)

MLP g. 0.613 ± 0.019 0.587 ± 0.033 0.809 ± 0.029 0.617 ± 0.026 0.657 ± 0.036 0.657

SNN g. 0.619 ± 0.023 0.596 ± 0.027 0.805 ± 0.030 0.625 ± 0.019 0.651 ± 0.018 0.659

SNNTrans g. 0.627 ± 0.019 0.618 ± 0.018 0.816 ± 0.037 0.631 ± 0.023 0.641 ± 0.026 0.667

ABMIL h. 0.594 ± 0.033 0.601 ± 0.033 0.779 ± 0.035 0.579 ± 0.070 0.637 ± 0.024 0.638

CLAM-SB h. 0.594 ± 0.047 0.595 ± 0.028 0.787 ± 0.036 0.580 ± 0.053 0.648 ± 0.032 0.641

CLAM-MB h. 0.598 ± 0.030 0.600 ± 0.017 0.790 ± 0.031 0.582 ± 0.077 0.657 ± 0.038 0.645

TransMIL h. 0.605 ± 0.054 0.604 ± 0.054 0.793 ± 0.028 0.590 ± 0.057 0.649 ± 0.053 0.648

Porpoise g.+h. 0.646 ± 0.038 0.652 ± 0.022 0.819 ± 0.033 0.649 ± 0.030 0.665 ± 0.043 0.685

MCAT g.+h. 0.645 ± 0.031 0.648 ± 0.011 0.826 ± 0.033 0.651 ± 0.043 0.659 ± 0.062 0.690

MOTCat g.+h. 0.649 ± 0.016 0.646 ± 0.055 0.829 ± 0.039 0.654 ± 0.031 0.651 ± 0.053 0.687

CMTA g.+h. 0.653 ± 0.035 0.656 ± 0.045 0.837 ± 0.028 0.657 ± 0.029 0.660 ± 0.035 0.693

SurvPath g.+h. 0.651±0.028 0.667 ± 0.053 0.833 ±0.043 0.660 ± 0.015 0.674 ± 0.051 0.697

PIBD g.+h. 0.611 ± 0.012 0.606 ± 0.020 0.783 ± 0.056 0.621 ± 0.013 0.632 ± 0.038 0.651

Ours g.+h. 0.678 ± 0.048 0.668±0.042 0.835 ± 0.037 0.664 ± 0.035 0.680 ± 0.049 0.703

Table 7. Comparisons of C-index (mean ± std) with methods addressing missing modality over five cancer datasets by using ResNet50

encoder. The best results and the second-best results are highlighted in bold and in underline.

Model BLCA BRCA GBMLGG LUAD UCEC Overall
(N=373) (N=957) (N=571) (N=452) (N=480)

VAE 0.588 ± 0.016 0.618 ± 0.028 0.788 ± 0.019 0.588 ± 0.044 0.636 ± 0.034 0.643

GAN 0.585 ± 0.011 0.611 ± 0.026 0.779 ± 0.029 0.599 ± 0.051 0.637 ± 0.044 0.642

MVAE 0.588 ± 0.028 0.612 ± 0.029 0.774 ± 0.015 0.601 ± 0.026 0.636 ± 0.024 0.642

SMIL 0.610 ± 0.020 0.615 ± 0.015 0.775 ± 0.021 0.599 ± 0.024 0.647 ± 0.024 0.649

ShaSpec 0.615 ± 0.017 0.618 ± 0.028 0.791 ± 0.011 0.611 ± 0.040 0.656 ± 0.036 0.658
Transformer 0.613 ± 0.033 0.620 ± 0.022 0.797 ± 0.022 0.602 ± 0.039 0.652 ± 0.013 0.657

Ours 0.637±0.028 0.634 ± 0.033 0.806 ± 0.026 0.634 ± 0.038 0.661 ± 0.029 0.672
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Figure 9. Comparison of the co-attention weights calculated from the genuine (top) and generated (bottom) genomic features.
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Figure 10. Comparison of the co-attention weights calculated from the genuine (top) and generated (bottom) genomic features.
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Figure 11. Comparison of the co-attention weights calculated from the genuine (top) and generated (bottom) genomic features.
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Figure 12. Comparison of the co-attention weights calculated from the genuine (top) and generated (bottom) genomic features.
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Figure 13. Comparison of the co-attention weights calculated from the genuine (top) and generated (bottom) genomic features.


