TSP-Mamba: The Travelling Salesman Problem Meets Mamba for Image Super-resolution and Beyond – Supplementary Materials

Kun Zhou¹ Xinyu Lin² Jiangbo Lu^{1*} ¹SmartMore Corporation ²SSE, CUHK-Shenzhen

kunzhou@link.cuhk.edu.cn, linxinyu0327@gmail.com, jiangbo.lu@gmail.com

1. More Ablation Studies

In this section, we will discuss more fine-gain designs and comprehensive ablated analysis of our proposed TSP-Mamba, including the choices of starting position, overlapped or non-overlapped window partition, TSP-LSTM without global 2D-SSM and other local scanning schemes (i.e., Hilbert, Zigzag and Z-shaped pipelines). Later on, we will further evaluate the impacts of either ablating TSP-LSTM or replacing it with window attentions.

[a. Starting pos.:] We compare our default top-left setup (TSP) with two counterparts starting from the center pixel (**TSP-C**₁ (1,1) and **TSP-C**₂ (2,2) for a 4×4 patch). TSP-C_{1,2} yield similar results to our default version (termed as TSP). [b. Partition:] For efficiency, we use a non-overlapping partition scheme in TSP-LSTM. The overlapping version (O-**TSP**) shows only a slight improvement $(0.02dB\uparrow)$ but larger FLOPs. [c. Multi TSP-LSTM (Multi-TSP-LSTM) without **2D-SSM:**] Stacking multiple TSP-LSTM layers may lack global modeling ability. As can be seen in Tab. below, Multi-TSP-LSTM gets degraded performance. This experiment underscores the necessity of integrating local TSP-LSTM with global 2D-SSM. [d. Scanning:] We trained three additional models replacing TSP with Hilbert, Zigzag, and Z-Shaped scannings. Results below show TSP (content-adaptive) outperforms the other three *content-invariant* scanning methods with only extra 0.8G FLOPs for building TSP paths. *Models in **bold** use the TSP-Mamaba-Tiny structure (431K) but different scan strategies.

Urban100 $\times 4$	TSP-C ₁	TSP-	\mathbf{C}_2	O-TSP	Τ	Multi-TSP	-LSTM	TSP
PSNR (Param.)	26.60	26.5	59	26.63		26.24(4	33K)	26.61
FLOPs (G)	16.2	16.	2	18.5		20.7	7	16.2
Urban100 $\times 4$	Hilbert	t Scan	2	Ligzag	1	Z-Shaped	TSP	•
PSNR/FLOPs(C	i) 26.49/	/15.4	26	.41/15.4		26.49/15.4	26.61/1	6.2

We trained two additional models: (i) **M9**, which drops TSP-LSTM, (ii) **M10**, which replaces TSP-LSTM with 4×4 window attention. The results below show that M8 (default setting in Tab.3) is 0.48dB/0.12dB higher than M9 and M10.

Urban100 ×4	M9 (no TSP-LSTM)	M10 (Win. Attn.)	M8 (TSP-LSTM)
PSNR/SSIM	26.13/0.7881	26.49/0.7976	26.61/0.7992
Param./FLOPs(G)	398K / 12.1	442K / 21.7	431K / 16.2

2. Detailed Results of Classic SISR.

In our main paper, we report the averaged performance of different classic SISR methods, including SwinIR [4], SRFormer-L [5], HAT [1], RGT [2], MambaIR-L [3]. Here, we provide the detailed result on each benchmark.

Class SISR (×2)	Set5	Set14	BSD100	Urban100	Manga109
SwinIR	38.42	34.46	32.53	33.81	39.92
SRFormer-L	38.51	34.44	32.57	34.09	40.07
HAT	38.63	34.86	32.62	34.45	40.26
RGT	38.59	34.83	32.62	34.47	40.34
MambaIR-L	38.57	34.67	32.58	34.15	40.28
TSP-Mamba-L	38.78	35.09	32.69	34.70	40.64
Class SISR (\times 3)	Set5	Set14	BSD100	Urban100	Manga109
SwinIR	34.97	30.93	29.46	29.75	35.12
SRFormer-L	35.02	30.94	29.48	30.04	35.26
HAT	35.07	31.08	29.54	30.23	35.53
RGT	35.15	31.13	29.55	30.28	35.55
MambaIR-L	35.08	30.99	29.51	29.93	35.43
TSP-Mamba-L	35.26	31.49	29.58	30.54	35.94
Class SISR (×4)	Set5	Set14	BSD100	Urban100	Manga109
SwinIR	32.92	29.09	27.92	27.46	32.03
SRFormer-L	32.93	29.08	27.94	27.68	32.21
HAT	33.04	29.23	28.00	27.97	32.48
RGT	33.12	29.23	28.00	27.98	32.50
MambaIR-L	33.03	29.20	27.98	27.68	32.32
TSP-Mamba-L	33.31	29.57	28.05	28.24	33.00

References

- Xiangyu Chen, Xintao Wang, Wenlong Zhang, Xiangtao Kong, Yu Qiao, Jiantao Zhou, and Chao Dong. Hat: Hybrid attention transformer for image restoration. *arXiv preprint arXiv:2309.05239*, 2023. 1
- [2] Zheng Chen, Yulun Zhang, Jinjin Gu, Linghe Kong, and Xiaokang Yang. Recursive generalization transformer for image super-resolution. In *ICLR*, 2024. 1
- [3] Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong

^{*}Corresponding author

Ren, and Shu-Tao Xia. Mambair: A simple baseline for image restoration with state-space model. *arXiv preprint arXiv:2402.15648*, 2024. 1

- [4] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Image restoration using swin transformer. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 1833–1844, 2021.
- [5] Yupeng Zhou, Zhen Li, Chun-Le Guo, Song Bai, Ming-Ming Cheng, and Qibin Hou. Srformer: Permuted self-attention for single image super-resolution. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 12780– 12791, 2023. 1