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A. Additional Network Configuration Details
The layers of the modules or models in Fig. 2 are empir-
ically determined. Firstly, the CNN backbone of the Kn-
cukleCreasePoint follows the same backbone as in [25].
Therefore, the dimension (length) of the feature f in the de-
tected knuckle crease keypoint templates is 256. The num-
ber of self-attention and cross-attention layers in the Knuck-
lePointPair model is set to l = 9 and with t = 20 iterations.
From the detected keypoint templates and estimated corre-
spondences, only the top-k (k= 96) mutually matched cor-
respondences are selected by sorting with scores. During
the graph formation, nine neighboring nodes with k-NN are
employed. Lastly, we empirically set l = 3 graph neural
network layers for both the “Cross-Node and Self-Graph”
module and the graph classification module.

The average image size (width → height) of detected fin-
ger knuckle by the detector [6] is 158→185 for the dataset
in [47], 385→463 for the dataset in [11], and 599→801 on
our multi-pose dataset. To achieve a judicious trade-off be-
tween the model complexity and the performance, the input
image size for training our CGN model on images from dif-
ferent finger knuckle datasets is automatically normalized
to 152→200.

B. Additional Details on Model Architecture
Cross-Node and Self-Graph: Current graph similarity
models [28, 29, 31] use computationally expansive atten-
tion to compute node similarity along graph-level represen-
tation. More specifically, they add the node similarity that
each node of Gp will be compared with all nodes of Gg with
attentional mechanism based on the graph-level similarity
[26] to improve the performance. The node similarity calcu-
lation and attention mechanism are computationally expan-
sive. However, for the mutually matched pair kp

i→ and kg
j→ ,

the cosine similarity between hp
i→ and hp

j→ already has high
positive similarity, on Fig. 4. Meanwhile, the neighborhood
node kp

u(k
p
u ↑ N(kp

i→)) and kg
u(k

g
u ↑ N(kg

j→)) also have a
high similarity under a highly similar graph structure among
genuine pairs in Fig. 1 and also in ??. Naturally, from Eq.
12, the node feature (l→1)hp

i→ and (l→1)hg
j→ will still be sim-

ilar (cross-node similarity score) after one round node fea-
ture updating by Self-Graph of Eq. (12) to (l)hp

i→ and (l)hg
j→

among genuine pairs.
Graph Similarity: To get the graph-level information on
the tracked graph G

pg, summation, weighted mean, and
max can be used to combine all graph node features. Gen-

Figure A. Visualization of ground truth keypoints (first row) and
the respective correspondences (matching color pairs in second
row).

uine image pairs can have more significant arccos value
when compared to the imposter pairs on the Eq. (13). Fur-
thermore, from the [53], the summation performance is the
best compared to the weighted mean and max operations.

C. Network Training and Protocols
This section details the training protocols for optimizing the
proposed matching framework with different modules. The
summarized number of images of different finger knuckle
database used to fine-tuning, training, and evaluation are
listed in Tab. A.
Finger Knuckle Detection: We should first segment the
region of interest (ROI) of the finger knuckle, the prox-
imal interphalangeal (PIP) joint, on the dorsal finger im-
age. Regarding our collected bending finger video dataset,
multiple finger knuckles are present in one video sequence
and interfere with each other when we segment the finger
knuckle of one finger, such as the middle finger. Therefore,
we use the trained YOLOv5 [6] and Deep SORT to track
and segment the finger knuckle to keep accuracy and con-
tinuity on our captured finger knuckle videos dataset. In
the rest of the public finger knuckle database, [47] and [11],
we use the trained YOLOv5 [6] model to segment the finger
knuckle images because they cannot offer continuous image
sequence for Kalman filter of Deep SORT.

C.1. Training KnuckleCreasePoint Model
Choice of Knuckle Crease Point Detection Model: A
careful analysis of finger-knuckle patterns acquired under
deformations reveals that the minor crease edge patterns,
and even some parts of such crease edges and intersection
points, can disappear under extreme finger mobility (e.g.,
holding a mouse or a coffee cup). The finger knuckle is es-



Table A. Dataset organization for training and evaluation.

Dataset KnuckleCreasePoint KnucklePointPair Indentification Performance
Fine-tuning Training Fine-tuning Training Training Within-Database Cross-Database

[47] 0 0 0 0 0 0 3,560
[11] 0 0 0 0 0 0 1,368
Ours 414 1 25,414 274 1 25,274 25,000 3,510 0

1 Ground truth of keypoint and correspondence are labeled manually

sentially a 3D surface, and therefore, ambient illumination
changes can significantly influence the visibility of such key
feature points. Under such a complex environment, con-
ventional methods, such as SIFT [18] or SURF [19], cannot
robustly detect such keypoints. The position of keypoint-
based templates must have high repeatability to ensure the
effectiveness of the recovered local feature, and such de-
scriptors should also be robust with illumination or affine
invariance. Therefore, a deep neural network-based method
with sufficient training data can meet such expectations and
is preferred. The most significant advantage of the Super-
Point [25] is that it is a self-supervised learning method with
pre-training on the synthetic shapes and then uses the homo-
graphic adaption to generate pseudo-ground truth interest
point labels for unlabeled images.
Training Protocol: For training the KnuckleCreasePoint
model, we manually labeled 414 finger knuckle images with
keypoint ground truth in Fig. A to fine-tune the Knuck-
leCreasePoint model. Following, we use the fine-tuned
KnuckleCreasePoint and homographic adaption detection
strategy to generate the ground truth of the chosen 25,000
finger knuckle images (explained in Sec. 4.1) from the left
hand of the captured video dataset to fine-tune the Knuck-
leCreasePoint again to get a more robust keypoint detec-
tion. Then, the KnuckleCreasePoint model, which has been
trained twice, will be used to generate the new ground truth
of these 25,000 images. Finally, we use the updated ground
truth of 25,414 images to fine-tune the KnuckleCreasePoint
model for detecting knuckle crease keypoint templates (lo-
cation and feature).

C.2. Train KnucklePointPair Model
The knuckle crease keypoint feature correspondences are
identified using the respective cost matrix between two sets
of nodes. We use the Sinkhorn algorithm [44] instead of the
Hungarian algorithm, as the time complexity of Hungarian
is O(n3), and the time complexity of Sinkhorn is O(n2

/ω
2).

(n is the dimension of the cost matrix, and the ω is the de-
sired precision.) In addition, the Sinkhorn is optimized to
be derivative and can be efficiently deployed on GPU. The
Sinkhorn optimizer is expected to be more stable under log-
domain [44] for computations.

To fine-tune the KnucklePointPair model on our captured
dataset, we have manually labeled 137 image pairs (274
images) for the ground truths and the correspondences as

shown in Fig. A. Using the trained KnuckleCreasePoint to
extract the descriptor F by given K (while K is the set of
location of labeled correspondences), we fine-tune the [43]
with the first round on the 137 image pairs. Then, we use
the fine-tuned model and homographic adaption strategy to
fine-tune the model again on the 25,274 finger knuckle im-
ages, and the resulting fine-tuned model is referred to as
KnucklePointPair.

C.3. Additional Details on Baseline Models
The baseline models chosen for the comparative perfor-
mance evaluation were fine-tuned or trained per the train-
ing protocol outlined in the respective references. These
pre-trained ResNet-101, DenseNet-161, EfficientNetv2-m,
and ViT-B models on ImageNet, were fine-tuned by per-
spective affine, horizontal flip, crop, and color-shifting data
augmentation on the selected 25,000 images as explained in
Sec. 4.1. As for the finger knuckle identification methods
baselines, the FKNet, RFNet-RSIL, and STResNet mod-
els are trained using the protocols stated in respective ref-
erences. Our CGN model is trained on the images by
randomly selecting image pairs without any data augmen-
tation for classification. The number of imposter pairs
624,375,000 (1000→999→25→25) is the 1041 times the
number of genuine pairs 600,000 (1000→25→24) from the
25,000 images. Therefore, focal loss is employed to ad-
dress the imbalance samples between the genuine and im-
poster pairs, and hard samples (the farther distance of gen-
uine pairs and closer distance of imposter pairs).

D. Additional Details on the Performance
Dataset Selection: For the cross-database performance
evaluation, the dataset [47] was chosen resulting from
largest 712 subjects, and the dataset [11] is the most chal-
lenging knuckle image dataset available to date in the pub-
lic domain. However, the database [41] is a subset of the
largest subject dataset [47], and the database [13] is largely
acquired to reveal 3D finger knuckle patterns. The dataset
provided by [12] is a two-session dataset (the interval is
about dozens of seconds), with the least intra-class vari-
ations, as the fingers presented during the imaging were
fixed (straight), and the imaging device was also in a fixed
position. As evaluated in [6], the matching performance
by RFNet-RSIL (employed as one of the baseline model)
is already superior with higher 95% of GAR at FAR of
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Figure B. Comparative DET plots using (a) our dataset, (b) the hand dorsal dataset [47], and (c) the most challenging dataset in[11].

0.001%. Therefore, these three datasets are excluded from
cross-database evaluation. The dataset download links are
provided on these respective references.

We choose ROC to evaluate comparative performance as
it’s the key performance metric widely used for the perfor-
mance evaluation and is also required as per the ISO/IEC
19795-1:2021 for the biometrics systems. However, we
also provide comparative performance evaluation, both us-
ing within-database and cross-database performance evalu-
ation, using the false positive identification (FRIR) versus
false negative identification rate (FNIR) in Fig. B. These
plots estimate the identification performance with open-
set access scenarios, and achieved by splitting the respec-
tive dataset with 80% identities as enrolled and the rest
20% as non-enrolled identities. These results are shown in
Fig. B and are consistent with the significant performance
enhancement over the existing methods observed in the re-
sults presented in Sec. 4 of this paper. It can be observed
that the FNIR of our method is much lower than that of the
baseline methods at the FPIR of 10→3, and this difference is
quite significant in the cross-database performance evalua-
tion.

D.1. Multipose Finger Knuckle Video Dataset
Database Details: This dataset is acquired from volunteers
who slowly bent their fingers from 0↑ to about 90↑ and then
back from 90↑ to 0↑, repeating this motion 2 to 3 times.
About 10 seconds of 4K videos, by either iPhone or Sam-
sung smartphone, were acquired from 351 different sub-
jects. Most volunteers are from Asia, while few are from
Europe and Africa. More details on this dataset acquisition,
composition, and download links are provided via [52]. We
use finger knuckles of the left hand as the training set and
the middle finger knuckle of the right hand as the testing
set. However, the difference between contiguous frames is
too small, resulting in noticeable similarity scores between
contiguous frames. Therefore, our experiments do not use
all frames for training or evaluation. We select an average

of 25 frames per video (about two per second) for training
and 10 frames per video (about one frame per second) for
the performance evaluation.

The baseline CNN models and the ViT-B offer rel-
atively similar performance in this dataset, while the
EfficientNetv2-m is the best and the ViT-B is the worst.
From the corresponding experimental results in Fig. 6a and
summarized Tab. 2 on Sec. 4.1, the ViT-B [51] stated that
the ViT can only outperform the CNN models when fed
with enough data. As for the rest of the lightweight (shal-
low) matching models for finger knuckle, their performance
is the lowest because they are designed for training and test-
ing on small finger knuckle datasets, while these heavy-
weight SOTA CNN models will overfit [7]. These finger
knuckle models can outperform the most lightweight ver-
sion of these SOTA CNN models. However, we have more
training sets and testing sets that can make full use of the
ability of these heavyweight SOTA CNN models to avoid
overfitting.

D.2. PolyU Hand Dorsal Image Dataset
These results also indicate high generalization ability based
on the interpretable method proposed in this paper. The
performance of our model doesn’t drop with too much on
GAR values, and the performance gap between our model
and other models is increased in Fig. 6b and summarized
Tab. 3 on Sec. 4.2. It shows that our model can perform
best on our captured finger knuckle dataset (Sec. 4.1) and
tackle the flat finger knuckle images with the highest gener-
alization ability. As the reset model, their performance has
dropped significantly compared to our method on the EER
and GAR values. The baseline CNN-based models use the
learned pattern kernels to recover activation feature maps.
However, this dorsal image dataset is flatter than our cap-
tured finger knuckle and has different texture information;
these CNN-based models’ performance has degraded as ex-
pected. Lastly, the ViT-B, with an attentional mechanism,
shows degraded performance, which can be attributed to the



changes in the correlation between image patches, resulting
in different deep features. The texture changes at different
keypoint locations can also be observed in Fig. F.

D.3. PolyU Contactless Finer Knuckle v3.0 Dataset

Table B. Comparative performance summary for the dataset in [11]
with protocols as in [13].

Model
GAR

(FAR=10↑5)
GAR

(FAR=10↑4)
GAR

(FAR=10↑2)
DenseNet-161 [49] 0.00% 0.00% 0.00%

EfficientNetv2-m [50] 0.00% 0.00% 0.00%
ResNet-101 [48] 0.00% 0.00% 0.00%

ViT-B [51] 0.00% 0.00% 1.28%
FKNet [7] 3.68% 7.52% 27.04%

RFNet-RSIL [6] 4.18% 5.79% 19.55%
STResNet [15] 0.32% 0.64% 17.31%

Ours 77.51% 90.23% 96.31%

Our outperformed performance can be attributed to the
robustness of (interpretable) knuckle crease points com-
pared to local or global textures, which can still be detected
even when the view angle, pose, or illumination changes.
Furthermore, our proposed graph neural network can cap-
ture the graph structure similarity and the descriptor sim-
ilarity of such keypoints at the same time. The global
knuckle pattern appearance can significantly change with
pose changes due to significant agility in the proximal in-
terphalangeal joint. These changes are dramatic in [11]
two-session dataset and often result in fatal feature changes.
This can explain the relatively low performance achieved
on this dataset in Fig. 6c and Fig. 6d and summarized
Tab. 4 and Tab. B, respectively. The CNN-based, ViT-B,
and SOTA finger knuckle models that use global features
cannot deal with such deformations in finger knuckle fea-
tures, resulting in poor performance. Comparative results in
Fig. 6c and Fig. 6d indicate that our keypoint-based method
with a graph neural network offers significantly enhanced
generalizability.

D.4. EfficientNetv2-L and ViT-L

(a) (b) (c)

Figure C. Comparative ROC result from the EfficientNetv2-L and
ViT-L under the all-to-all protocol on (a) our dataset, (b) hand dor-
sal [47] dataset, and (c) the most challenging finger knuckle [11]
dataset.

From the above within-database and cross-database per-
formance, the EfficientNetv2-m [50] can outperform the
rest of the baselines compared in this paper. The ViT

[51] has been successfully used in many applications as
the backbone of the current large vision models, largely
due to its high generalization ability with ultra-large-scale
datasets. Therefore, a more extensive version of these two
models (EfficientNetv2-L and ViT-L) was also employed
for the performance evaluation and used the same train-
ing steps discussed earlier Supplementary C.3. Instead of
only using 25,000 images (explained in Sec. 4.1), the ViT-
L (referred to as ViT-L-409K) was also trained using all

the knuckle image samples from the left hands, i.e., with
409,267 images, to ascertain the performance from the ViT
model using a rich training set. Such experimental results
to show these models performance are presented in Fig. C,
and it can also ascertain our proposed matching method ef-
ficiency when compared to Fig. 6.

D.5. Estimation of Model Complexity
From the within-database and cross-database, our CGN
model can significantly outperform these employed base-
line models, especially on the most challenging dataset [11].
In Tab. C, we present relative model complexities, which
have been estimated with different indices. The complexity
of our model is not high, and our complete system is live,
which can perform completely contactless finger knuckle
identification online.

Table C. Comparative complexity of different models.

Model 1 Params 2

(M)
Model Size

(MB)
FLOPs 2

(G)
Inference Time 3

(ms)
DenseNet-161 28.7 116.2 15.7 11.4

EfficientNetv2-m 54.2 218.3 49.9 15.0
ResNet-101 44.7 179.0 15.7 15.4

ViT-B 87.05 348.8 33.7 8.6
FKNet 4 53.91 210.1 2.7 24.8

RFNet-RSIL 1.35 5.4 2.8 4.3
STResNet 19.47 77.9 12.5 13.8

Keypoint+GMN 14.5 59.4 22.4 18.7
Keypoint+SimGNN 13.3 53.8 14.4 17.2
Keypoint+MGMN 13.5 54.5 14.5 17.0
Keypoint+ERIC 13.4 53.9 14.4 16.5

Ours 14.8 61.9 14.7 16.8
1 These graph similarity models (including ours) rely on the detected keypoint tem-

plate. Therefore, the model complexity from keypoint detection and correspon-
dence estimation module, represented by Keypoint, should be added.

2 The thop library estimated the Params and FLOPs of all models except FKNet,
while NetScope estimates the FKNet.

3 The inference time (feature extracting and matching) is the average time for one
image pair and is estimated from 3270 image pairs in our captured dataset [52]
using Ubuntu 20.04 LTS OS machine with GeForce RTX 4090 and i5-12400F
CPU.

4 The FKNet was implemented under Caffe architecture, and its inference time is
estimated using Matlab as in [7]. The rest of the models are implemented using
PyTorch architecture (PyTorch 2.0.0).

D.6. Additional Details of Ablation Study
Graph Similarity Model: To ensure a fair comparison, we
change the input node feature of these models (graph simi-
larity models) to fit descriptors of detected keypoints from
the KnuckleCreasePoint. We then keep the same default



Table D. Comparative performance for our proposed different modules using challenging all-to-all protocol on hand dorsal database [47].

Model GAR
(FAR=10→5)

GAR
(FAR=10→4)

GAR
(FAR=10→2)Graph Convolution Feature Positional Embedding Cross Similarity

ConvNode KnucklePointPair - arccos 27.79% 89.78% 96.98%
ConvNode KnuckleCreasePoint - arccos 60.14% 94.07% 97.06%
ConvNode KnuckleCreasePoint Sorted by Score cosine 64.61% 94.54% 96.94%
ConvNode KnuckleCreasePoint Sorted by Locate arccos 76.96% 93.59% 97.05%
ConvNode KnuckleCreasePoint Sorted by Score arccos 80.19% 92.88% 97.09%
GIN [53] KnuckleCreasePoint Sorted by Score arccos 61.77% 92.85% 97.12%
GCN [56] KnuckleCreasePoint Sorted by Score arccos 62.89% 91.23% 97.32%

GATv2 [55] KnuckleCreasePoint Sorted by Score arccos 71.74% 81.78% 97.27%
SAGE [54] KnuckleCreasePoint Sorted by Score arccos 48.12% 89.95% 97.09%

Table E. Comparative performance between the SOTA graph
matching models and ours by using challenging all-to-all protocol
on our captured, the hand dorsal [47], and the most challenging
[11] dataset.

Model
GAR

(FAR=10↑5)
GAR

(FAR=10↑4)
GAR

(FAR=10↑2)
GMN [26] 11.28% 26.69% 76.72%

SimGNN [28] 28.26% 58.02% 93.94%
MGMN [29] 12.18% 42.41% 93.97%
ERIC [31] 13.46% 37.74% 90.52%

Ours 89.99% 93.19% 97.32%
GMN [26] 0.00% 13.45% 77.49%

SimGNN [28] 4.28% 21.38% 83.51%
MGMN [29] 4.38% 9.22% 69.90%
ERIC [31] 6.51% 20.94% 73.60%

Ours 80.19% 92.88% 97.09%
GMN [26] 0.00% 4.30% 41.20%

SimGNN [28] 16.95% 34.10% 69.51%
MGMN [29] 0.34% 2.40% 48.65%
ERIC [31] 1.04% 3.91% 49.56%

Ours 55.41% 66.35% 80.95%

configurations of these models for the performance evalu-
ation on the corresponding graphs composed of mutually
matched correspondences. From the experimental result in
Fig. 8 and summarized Tab. E, the main reason why our
model can outperform these models is that these models
were introduced for graph edit distance datasets, chemical

compound graphs, program dependence graphs, and ego-

network of movie graphs. These datasets have the one-hot
labeled node feature and have a very high similarity graph
structure among the same graph class. However, our corre-
spondence graphs are more complex because node features
differ, unlike using one-hot nodes with high cosine similar-
ity. The graph structure is also different even in the same
class, resulting from different correspondences on different
image pairs. These graph similarity models attempt to learn
the graph structure similarity between graph pairs. Addi-
tionally, the CGN can understand the node-to-node similar-
ity along the graph structure. It can also be observed from
Fig. 8c to the Fig. 6c that graph-matching methods offer
much better performance than the other baseline methods
based on CNN or ViT models.
Module Efficiency: From the Sec. 3.3, our proposed model
uses the feature from the KnuckleCreasePoint, adds the
positional embedding, and incorporates the arccos simi-

(a) (b)

Figure D. Comparative ROC plots for proving our performance
with ablation study on the deformable dataset [11] (a) ablation
study of our proposed methods; (b) compare to other graph convo-
lution modules.

larity to calculate the node-to-node similarity among two
graphs that have better performance on the cross-database
in Fig. 8d when compared to without these modules. An-
other set of ablation studies involved replacing our ConvN-
ode with other graph convolutions, such as GIN [53], SAGE
[54], GATv2 [55], and GCN [56], while using the best con-
figurations and the same model architecture. Furthermore,
we also evaluate the cross-database performance, with and
without, on the most challenging two-session dataset [11] in
Fig. D.

Such results in Fig. 8e, Fig. D, and summarized Tab. D,
indicate that our convolution on node dimension can
significantly enhance the performance with higher TAR
(FAR@10→5) values. It can also be observed from these
results that all other considered graph convolutions offer
quite similar recognition performance. The feature vectors
resulting from the KnucklePointPair through self-attention
and cross-attention are expected to have high similarity, re-
gardless of genuine and imposter pairs. Compared to the
KnuckleCreasePoint features from Fig. 8d and Fig. D, it
can explain relatively poor performance. In addition, our
model adds the positional embedding, based on the ConvN-
ode, which is expected to improve the matching accuracy
compared to without positional embedding. Superior per-
formance using arccos similarity instead of cosine similar-
ity can be attributed to the enhancement in the values from
the relative differences. Lastly, it can also be observed that
positional embedding based on the mutually matched scores



offers better results than positional embedding based on the
keypoint locations. When sorted by the match scores, the
top scores or positions are expected to be the keypoint pairs
and relatively generate higher similarity.

D.7. Analysis on Keypoints and Descriptors
Finger knuckle crease keypoints offer rich and interpretable
source of information for the matching. This section
presents an experimental analysis of extracting such key-
points and respective features using the approach adopted
in this paper. We present such analysis like those for SIFT
[18] (i.e. each image will be randomly rotated from ↓45↑ to
45↑, be randomly scaled from 0.85 to 1.15, and each pixel
value will be randomly added 1% percent noise) to evalu-
ate the repeatability in the detection of knuckle crease key-
points and the reliability of respective feature descriptors
detected by KnuckleCreasePoint using 152→ 200 size ROI
images that are used for the CGN model.

D.7.1. Knuckle Crease Keypoints Repeatability
We count the number of detected keypoints per image and
the repeatability of the location (within ± 10 pixels) in
the detection of keypoints by varing the detection thresh-
old, as shown from plots in Fig. E with a standard vari-
ance of 0.2. With a higher detection threshold, a smaller
number of keypoints will be detected by KnuckleCrease-
Point model. A lower detection threshold is expected to
result in higher number of detected keypoints with much of
the noise. Therefore, to maintain high repeatability and to
alleviate noise or spurious keypoints, we chose the detec-
tion threshold of 0.15 for computing similarity based on the
number of mutually matched correspondences in Fig. I. The
number of detected keypoints and their repeatability is in-
fluenced by the image quality. In this context, the quality of
segmented finger knuckles of the hand dorsal dataset [47]
is poor as compared to the other datasets used in our study.
This is also the reason that the average number of keypoints
detected in images from this dataset is lowest. Based on the
same detection threshold, we also generate the statistics for
the distribution of the spatial location of keypoints in the
three considered public datasets, as shown in Fig. F. Be-
cause our dataset [52] and the dataset in [11] contains chal-
lenging or deformed finger knuckle images, distribution of
the detected keypoints is much higher towards the lower re-
gions of the finger knuckles. In contrast, the images in [47]
have a fixed or straight pose, and therefore, the distribu-
tion of keypoints in the ROI regions is relatively even. The
heatmaps in Fig. F also indicate that the probability that a
keypoint will be detected at the boundary regions of ROI
images is low.

D.7.2. Reliability of Keypoint Descriptors
Besides the statistics on the detection of keypoints, we also
analyze the reliability in estimating detected feature de-

(a) (b)

Figure E. Under different detection thresholds, (a) the number of
keypoints per image, (b) the repeatability of keypoints.

(a) (b) (c)

Figure F. Visualization of the location distribution of keypoints on
different finger knuckle datasets under detection threshold 0.15.
(a) our finger knuckle video dataset, (b) hand dorsal image dataset
[47], (c) finger knuckle v3 dataset [11].

scriptors for the respective keypoints. Since the Knuck-
lePointPair model uses the dot product similarity score as
the match score, our proposed CGN model uses the Cross-
Node to compute the node-to-node arccos similarity. The
plots in Fig. Gb indicate that we can detect the keypoints
and descriptors on all finger knuckle images using a prede-
termined detection threshold and generate all the keypoint
descriptors as a templates database. Then, we match a de-
scriptor of a detected keypoint of an image to the database
with the nearest dot product value to ascertain whether it can
be matched with itself. We obseve that the descriptor is reli-
able enough so that almost all of them can be matched with
itself on the descriptor database under different detection
thresholds. Furthermore, we also determine the descriptor
reliability when we set the pixel values outside a specific
block size (the value of Fig. Gc is the length of the square
block) to zero to simulate the extent of the influence from
neighboring pixels. As shown in Fig. Ga, for a keypoint la-
beled with red color, only the original pixel values within
the block size are considered with blue color. We use the
KnuckleCreasePoint model to extract the keypoint feature
vector (descriptor) again from such masked knuckle ROI
image and match the resulting descriptor with the descrip-
tors in the database with the same method as for Fig. Gb
to compute the matching accuracy of descriptors. From the
plots in Fig. Gc, the matching accuracy is significantly de-
graded or very low when the block size is smaller than 48
pixels. Such reduction in reliability can be considered as a
shortcoming of the CNN models because a pixel of a fea-



ture map will be affected by the neighborhood pixel val-
ues within the current field of view (the estimated filed of
view for the detection head of KnuckleCreasePoint is 64),
which in turn is influenced by the choice of kernel, stride,
and pooling size. If the block size exceeds 56, the descriptor
match accuracy can be considered as reasonable or accept-
able.

Block Size

(a) (b) (c)

Figure G. Analyzing effectiveness of knuckle crease keypoint fea-
ture descriptor: (a) visualization of a pixel-centered block within
the masked region, (b) variation in the average match accuracy of
the feature descriptor, with the nearest ones, for different detection
thresholds, (c) variation of the average match accuracy of the fea-
ture descriptor, with the nearest ones, for different sizes of blocks.

D.7.3. Number of Mutually Matched Keypoints
Finally, based on the detection threshold of 0.15 for Knuck-
leCreasePoint model, we can determine how many corre-
spondences are matched under a given match threshold.
Such a plot is shown in Fig. H, with a standard variance
of 0.2, is shown for the different datasets. The genuine
image pairs have more mutually matched correspondences
as compared to those for the imposter pairs and this is ex-
pected since the similarity of respective descriptors in gen-
uine pairs will be larger than those in imposter pairs, as also
discussed in Sec. 3.3. The number of mutually matched
correspondences decrease with the increase in the match-
ing threshold. As shown in Fig. Hb, the average number of
matched correspondences tends to zero as the match thresh-
old increases. After locating correspondences between two
images, we can use the number of mutually matched key-
points as the match score between two finger knuckle im-
ages, which can be used to ascertain the expected per-
formance of the correspondences with a simple matching
method. Such an evaluation is shown in Fig. I, and uses
the all-to-all protocol for such matching performance. With
the match threshold gets stricter, the matching performance
is enhanced on the three datasets as it is expected to alle-
viate several falsely matched correspondences. If we com-
pare this match performance with those in Fig. 6, it can be
observed that the performance achieved is even better than
some baselilne SOTA models, largely due to the robustness
of the powerful keypoint descriptors as compared to texture-
based analysis. Especially for the deformable or challeng-
ing finger knuckle dataset [11] performance in Fig. Ic, it’s
easy to observe that the keypoint-based matching perfor-
mance is better than using the texture information on the

respective (deformable) images as it outperforms the other
SOTA models.

(a) (b)

Figure H. Variation in the number of mutually matched knuckle
crease keypoints with different match thresholds (under a fixed
keypoint detection threshold of 0.15), (a) for genuine match pairs
and (b) imposter match pairs.

(a) (b) (c)

Figure I. Comparative ROC plot using the number of mutually
matched keypoint pairs under the all-to-all protocol: (a) using the
index finger knuckle images from the right hands in our finger
knuckle video dataset [52], (b) using middle finger knuckle images
in the hand dorsal dataset [47], (c) using two-session samples on
the deformable finger knuckle dataset [11].

E. Additional Details on Uniqueness Analysis
Any study on the uniqueness of finger knuckle patterns
should utilize images acquired from the fixed pose that can
reveal rich features, just as for the other biometric modal-
ities like fingerprints [39]. Therefore, we also selected
knuckle images with fixed or upright poses for the unique-
ness evaluation. Unlike other popular biometrics, this is
the first attempt to estimate the uniqueness of 2D finger
knuckle patterns, and therefore, a comparative analysis of
such uniqueness from the different image resolutions (ap-
pearing in the public datasets) is also presented using the
FRC index. In addition to our dataset [52], the hand dor-
sal dataset in [47] is also used to estimate the FRC of rela-
tively low-resolution images. From the finger knuckle de-
tection results, the average image resolution of our dataset
is 598.65 → 800.87 (width → height and about 760 dpi),
and such values using the hand dorsal image dataset [47]
is 158.34→185.10 (about 200 dpi). We resized the detected
finger knuckle images in our dataset to 296 → 400 and re-
sized such images from hand dorsal dataset to 152 → 184
for estimating the FRC. Such an image size was empiri-
cally chosen as a trade-off the accuracy between accuracy



(a) (b)

(c) (d)

Figure J. Plots in (a) and (b) illustrate the spatial position and fea-
ture threshold estimated for our finger knuckle video dataset using
296→ 400 (width→ height) size ROI images, while the (c) and (d)
are the respective estimation of thresholds from the hand dorsal
image dataset using 152→ 184 size ROI images.

and size of finger knuckle images. It should be noted that
the knuckle crease keypoint location detection branch of
KnuckleCreasePoint model is trained on the feature maps
(1/8 of input image size). If we set such image size from
our dataset to 592 → 800 for training the KnuckleCrease-
Point model, the detected feature map, with 74 → 100 size,
has many negative samples resulting in inferior detection
accuracy. The KnuckleCreasePoint model can be modified
for such high resolution. However, to ensure fairness in the
comparisons of the uniqueness, the same model architecture
and loss function as employed in Sec. 3.1 should be used.
Lastly, the KnuckleCreasePoint model needs to be trained
again at these two image resolutions by following the same
training protocol in Supplementary C.2. It is reasonable to
assume that the distribution of different client’s keypoint
templates (position and feature) differs. Therefore, the n-
components of BIC were computed for each subject in our
database to estimate the parameters for the distribution in
Eq. (18).

E.1. Estimation on Tolerance for Keypoint Matches
The knuckle crease keypoint features in the corresponding
locations are considered a match if the spatial locations and
feature distance are close or within a predetermined thresh-
old (referred to as the tolerance). In this study, we utilize a
database comprised of ground truths of knuckle keypoint
matching pairs to establish the protocol for an authentic
match, thereby computing p(T p

, T
g). Given the genuine

matches among ground truths, the rigid transformation ma-

Figure K. Estimating the minimum number of matched keypoints
w for the uniqueness analysis in this paper. The above plots is for
our [52] and hand dorsal dataset [47] images and were generated
using the estimated spatial distance and feature distance thresh-
olds.

trices between such pairs can be determined and used for the
template alignment. Similar to the fingerprints in [32], after
such alignment, the spatial distances ε(kp

,kg) and feature
value differences ε(f p

,f g) between each pair of matched
keypoint ↔kp

,f p↗, ↔kg
,f g↗ of knuckle are computed. From

the estimation illustrated in Fig. J, the !k and !f tolerance
for our dataset is respectively 9.258 and 0.844, while re-
spective values of the hand dorsal dataset [47] are estimated
as 6.750 and 0.726.

E.2. Number of Matched Keypoints

This section outlines the process of estimating the mini-
mum value of w, i.e. an unknown pair of knuckle templates
is considered as matched if the number of keypoint corre-
spondences between the gallery and probe templates ↘ w.
Conversely, the input pair is considered as a non-match if
the number of keypoint correspondences does not exceed
w. We first compute the number of matched correspon-
dences using the Euclidean distance (ε(kp

,kg) ≃ !k and
ε(f p

,f g) ≃ !f ) generated from all-to-all match protocols.
The number of such matched keypoints is considered as the
match score to differentiate between genuine and imposter
matches resulting from the input pair of templates. The op-
timal value of w is determined from a performance metric,
equal error rate in our experiments, to differentiate between
the genuine and imposter finger knuckle pairs.

From the labeled ground truth correspondences in the
subset of images from the hand dorsal image dataset, the av-
erage number of correspondences is 59.03 among genuine
image pairs. Our trained KnuckleCreasePoint model on
152 → 184 size ROI images, with 0.19 detection threshold,
generates an average of 59.15 keypoint correspondences
among the genuine pairs while the average number of key-
points in such images is 69.412. This is the key reason we
set m = n = 69 (Tab. 5) for a fair uniqueness analysis in
Tab. 5 and Tab. G. Following the same rule of finding the
optimal value of w, we determine the optimal value of w
for this study, which is found to be 17 for hand dorsal [47]
and 4 for our dataset in Fig. K.



Table F. Uniqueness analysis using the keypoints generated from knuckle crease bifurcations and endings.

Dataset !k !f
(m,n,w,ω) p(T p, T g) FRCω

Bifurcation Ending Bifurcation Ending Bifurcation Ending

Hand Dorsal [47]

6.750 0.726 (55,55,11,0.05) (14,14,2,0.05) 3.929→ 10→4 4.300→ 10→4 1.233→ 10→3 5.843→ 10→4

6.750 0.726 (55,55,13,0.05) (14,14,4,0.05) 3.929→ 10→4 4.300→ 10→4 2.807→ 10→4 6.523→ 10→6

6.750 0.726 (55,55,15,0.05) (14,14,6,0.05) 3.929→ 10→4 4.300→ 10→4 5.292→ 10→5 4.640→ 10→8

5.250 0.726 (55,55,11,0.05) (14,14,2,0.05) 2.541→ 10→4 2.661→ 10→4 7.947→ 10→5 1.454→ 10→4

8.250 0.726 (55,55,11,0.05) (14,14,2,0.05) 5.445→ 10→4 6.267→ 10→4 6.028→ 10→3 1.642→ 10→3

6.750 0.676 (55,55,11,0.05) (14,14,2,0.05) 7.376→ 10→5 1.357→ 10→4 5.252→ 10→10 1.903→ 10→5

6.750 0.776 (55,55,11,0.05) (14,14,2,0.05) 1.508→ 10→3 1.106→ 10→3 1.021→ 10→1 6.641→ 10→3

Ours

9.258 0.844 (61,61,3,0.05) (8,8,1,0.05) 5.646→ 10→5 2.068→ 10→4 3.220→ 10→4 9.609→ 10→5

9.258 0.844 (61,61,5,0.05) (8,8,3,0.05) 5.646→ 10→5 2.068→ 10→4 5.419→ 10→6 2.174→ 10→8

9.258 0.844 (61,61,7,0.05) (8,8,5,0.05) 5.646→ 10→5 2.068→ 10→4 6.383→ 10→8 3.146→ 10→12

7.758 0.844 (61,61,3,0.05) (8,8,1,0.05) 4.006→ 10→5 1.467→ 10→4 9.134→ 10→5 4.670→ 10→5

10.758 0.844 (61,61,3,0.05) (8,8,1,0.05) 7.548→ 10→5 2.781→ 10→4 9.101→ 10→4 1.779→ 10→4

9.258 0.794 (61,61,3,0.05) (8,8,1,0.05) 2.103→ 10→5 9.755→ 10→5 9.293→ 10→6 2.078→ 10→5

9.258 0.894 (61,61,3,0.05) (8,8,1,0.05) 1.303→ 10→4 3.858→ 10→4 4.425→ 10→3 3.373→ 10→4

Table G. Uniqueness analysis using our database [52].

!k !f (m,n,w,ω) p(T p, T g) εω FRCω

9.258 0.844 (69,69,2,0.05) 5.387 ↓ 10↑5 0.316 4.161 ↓ 10↑3

9.258 0.844 (69,69,4,0.05) 5.387 ↓ 10↑5 0.478 1.400 ↓ 10↑4

9.258 0.844 (69,69,6,0.05) 5.387 ↓ 10↑5 0.601 3.328 ↓ 10↑6

9.258 0.844 (69,69,8,0.05) 5.387 ↓ 10↑5 0.694 5.497 ↓ 10↑8

9.258 0.844 (69,69,17,0.05) 5.387 ↓ 10↑5 0.880 1.515 ↓ 10↑17

6.258 0.844 (69,69,4,0.05) 2.459 ↓ 10↑5 0.230 4.385 ↓ 10↑6

7.758 0.844 (69,69,4,0.05) 3.765 ↓ 10↑5 0.341 2.915 ↓ 10↑5

10.758 0.844 (69,69,4,0.05) 7.306 ↓ 10↑5 0.624 4.709 ↓ 10↑4

12.258 0.844 (69,69,4,0.05) 9.494 ↓ 10↑5 0.784 1.290 ↓ 10↑3

9.258 0.744 (69,69,4,0.05) 5.932 ↓ 10↑6 N/A 8.678 ↓ 10↑9

9.258 0.794 (69,69,4,0.05) 1.954 ↓ 10↑5 0.194 1.968 ↓ 10↑6

9.258 0.894 (69,69,4,0.05) 1.247 ↓ 10↑4 0.954 2.999 ↓ 10↑3

9.258 0.944 (69,69,4,0.05) 2.510 ↓ 10↑4 1.551 2.106 ↓ 10↑2

E.3. Uniqueness with Higher Image Resolution

Contactless finger knuckle image resolution can vary even
within the images in a dataset. However, the resolution of
images in our dataset [52] is higher than that of those in
[47] used for analysis in Tab. 5. Therefore, it can be use-
ful to estimate the finger knuckle uniqueness on such rela-
tively higher-resolution ROI images in our dataset. In Tab. 5
(Tab. G), we present the FRCω score when !k, !f , and w

are respectively set to 6.750, 0.726, and 17 (9.258, 0.844,
and 4). Additionally, we adjust the value of !k from 3.750
to 9.750 pixels (6.258 to 12.258) in increments of 1.5, the
value of !f from 0.626 to 0.826 (0.744 to 0.944) in incre-
ments of 0.05, and the value of w from 15 to 21 (2 to 8) in
increments of 2. This is done to observe the variations in the
FRCω score about the Poisson parameter ϑω. Our findings
suggest that as the match requirements become more strin-
gent (increase of values in the first two columns in Tab. G),
the estimated uniqueness of the finger knuckle templates in-
creases, as evidenced by the observed decrease in the FRCω

scores. It can be observed from the comparisons in Tab. 5
and Tab. G, that the FRCω score in Tab. G is relatively lower
under the same thresholds, which is expected due to rela-

tively higher image resolution.

E.4. Uniqueness with Bifurcations and Endings

Figure L. Estimating the minimum number of matched keypoints
w, separately from the knuckle crease bifurcations and endings,
using the images in our [52] and hand dorsal dataset [47].

It is reasonable to believe that the keypoints detected
from the knuckle crease bifurcations are more reliable than
those from the knuckle crease endings. Unlike fingerprints,
the thickness of knuckle creases varies significantly, and
the number of keypoints from knuckle crease bifurcations
is significantly much larger than those from the crease end-
ings. Therefore, the uniqueness analysis presented in Tab. 5
has not differentiated the nature of keypoints. However,
it can be interesting to estimate the uniqueness of finger
knuckle patterns considering only the match among the key-
points generated from knuckle crease bifurcations or the
endings. In Tab. F, we separately analyze the p(T p

, T
g)

match probability of a pair of random matches between a
pair of keypoints (one is on the probe template, the other
is on the gallery template), specifically generated from the
knuckle crease bifurcation and ending types. Following the
same steps as earlier, the average number of bifurcations
and endings is respectively 55 and 14 for the hand dorsal
dataset [47], and the parameter w of bifurcation and end-
ing is respectively 11 and 2 in Fig. L, respectively. For our
dataset [52], the average number of bifurcations and end-
ings is respectively 61 and 8, while the parameter w respec-



tively for the bifurcation and ending is 3 and 1 in Fig. L.
It can be observed from our results in Tab. F, the proba-
bility p(T p

, T
g) of bifurcation is lower than that of ending,

especially on high resolution (while high-resolution images
are expected to offer more minutiae details), thereby con-
tributing more significantly to the uniqueness of knuckle
keypoint templates. While the probability FRCω is calcu-
lated by the Poisson distribution with ϑ = mnp(T p

, T
g),

the FRCω increases for the larger values of m and n. There-
fore, the FRCω from the crease bifurcations is higher than
those from the crease endings, while the average number of
crease bifurcation is as 3.9 (7.6) times as the average num-
ber of crease ending on hand dorsal dataset [47] (our dataset
[52]).

E.5. Societal and Privacy Related Impact
This work is expected to generate positive societal impact
especially for the forensic community, e.g. in timely and
accurately detecting real-world cases, e.g. child abuse [2–
4], where finger dorsal images are the only pieces of sci-
entific evidence available to establish identity of suspects.
Development of advanced and accurate algorithms to accu-
rately match real-world contactless finger knuckle patterns
can also lead to its deployment in mobile phone security,
multimodal or other applications that can generate further
positive impact. We have acquired the datasets as per the
IRB guidelines and ensured complete anonymity for the dis-
tribution of dataset. Therefore, our work in this paper will
not have any adverse privacy related impact.


