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Supplementary Material

A. Details on the minimization steps of the GEM

optimization algorithm

The optimization algorithm alternates between a minimiza-
tion step w.r.t. the distribution parameters and one w.r.t. the
assignment variables. In the following, ω designates the cur-
rent iteration.
• Minimization step w.r.t. the distribution parameter

For every k → {1, . . . ,K}, the first estimation step w.r.t.
ωk, with un = (u(ω)

n,k)1→k→K given, is performed by con-
sidering the following optimization problem:

minimize
ωk

↑
N∑

n=1

u(ω)
n,k ln p (zn | ωk) , (12)

For a pdf belonging to the exponential family, this optimiza-
tion problem is a convex. For instance, in the case of a
Gaussian distribution whose pdf is defined in (5), the nega-
tive log-likelihood term, designated by function F , reduces
to

F (ωk) =
1

2

N∑

n=1

u(ω)
n,k↓zn ↑ ωk↓2. (13)

The minimization of the above function (13) w.r.t ωk results
in an explicit form of the estimated distribution parameter
ω(ω+1)
k given by

ω(ω+1)
k =

∑N
n=1 u

(ω)
n,kzn

∑N
n=1 u

(ω)
n,k

. (14)

In turn, in the case of Dirichlet distribution whose pdf is
defined in (6), the negative log-likelihood term reads

F (ωk) =
N∑

n=1

u(ω)
n,k

(
↑

K∑

i=1

(εk,i ↑ 1) ln zn,i

+
K∑

i=1

ln!(εk,i)↑ ln!

(
K∑

i=1

εk,i

))
. (15)

Unlike the Gaussian model, the minimization of Dirichlet
negative log-likelihood (15) has no closed form solution.
To circumvent this problem, we resort to the Majorization-
Minorization (MM) strategy recently developed in [33].
Thus, the estimated distribution parameter ω(ω+1)

k can be ex-
pressed as follows

ω(ω+1)
k = MM(u(ω)

·,k ,ω
(ω)
k ). (16)

• Minimization step w.r.t. the assignment variable

For every n → Q, the second estimation step w.r.t. un is
achieved by minimizing the objective function (1), while
keeping the distribution parameter set to the estimated vec-
tor ω(ω+1)

k . However, since the partition complexity term
” is non convex, it is replaced by a linear tangent upper
bound. More specifically, the following tangent inequality
can be used:

ϑk lnϑk ↔ ϑ(ω+1)
k lnϑ(ω+1)

k + (1 + lnϑ(ω+1)
k )(ϑk ↑ ϑ(ω+1)

k )
(17)

Knowing that ϑk = 1
|Q|

∑
n↑Q un,k, the optimization prob-

lem (1) can be rewritten as follows

minimize
un

G(un) (18)

with

G(un) = ↑
K∑

k=1

un,k ln p
(
zn | ω(ω+1)

k

)

↑ ϖ
K∑

k=1

(1 + lnϑ(ω+1)
k )

|Q| (un,k ↑ u(ω)
n,k)

+ T
K∑

k=1

un,k lnun,k + ϱn

(
K∑

k=1

un,k ↑ 1

)
(19)

where ϱn is a Lagrange multiplier aiming to enforce the
sum-to-one constraint. The nonnegativity constraint can be
dropped since we will show next that it is satisfied by the
minimizer of G subject to the sum-to-one constraint.
The above optimization problem is convex. By cancelling
the derivative of the above objective function (19) w.r.t.
un,k, it can be checked that

lnun,k = ↑1↑ ϱn
T

+
1

T

(
ln p

(
zn | ω(ω+1)

k

)

+
ϖ

|Q| (1 + lnϑ(ω+1)
k )

)
. (20)

By applying the exponential function to (20) and determin-
ing the multiplier ϱn so that the sum-to-one constraint is sat-
isfied, it can be deduced that the optimal class assignment
vector u(ω+1)

n is obtained by applying the softmax function:



u(ω+1)
n

= softmax
(
1

T

(
ln p

(
zn | ω(ω+1)

k

)
+

ϖ

|Q| ln(ϑ
(ω+1)
k )

)

k

)
.

(21)

B. Generalized EM algorithm in the case of Gaus-

sian distribution

B.1. Feature representation in vision-only few-shot-

setting

Let us consider a few-shot scenario for vision-only mod-
els. Thus, for all dataset samples xn with n → {1, . . . , N},
the feature vectors zn are generated using a visual feature
extractor f (v) as follows

zn = Tzf
(v)(xn) (22)

where Tz is a positive scaling parameter.

B.2. Optimization algorithm

Using (13), (14), and (21), the proposed GEM algorithm
reduces to Algorithm 2 in the case of a Gaussian distribution
model.

Algorithm 2 GEM-Gaussian based few-shot classification
algorithm

Input: Compute zn for the dataset samples and, for all
k → {1, . . . ,K}, initialize ω(0)

k as the means computed
on the support set, and ϑ(0)

k = 1
for ω = 0, 1, . . . , L↑ 1 do

// Update assignment vectors for all query samples
u(ω+1)
n

= softmax
(

1
T

(
↑ 1

2↓zn ↑ ω(ω)
k ↓2 + ε

|Q| ln(ϑ
(ω)
k )

)

k

)

// Update the mean parameter for each class

ω(ω+1)
k =

∑N
n=1 u

(ω+1)
n,k zn

∑N
n=1 u

(ω+1)
n,k

, ↗k → {1, . . . ,K},

// Update class proportions

ϑ(ω+1)
k =

1

|Q|
∑

n↑Q
u(ω+1)
n,k , ↗k → {1, . . . ,K},

end for

C. Generalized EM algorithm in the case of Dirich-

let distribution

C.1. Feature representation in few-shot CLIP

Our second few-shot scenario is devoted to vision-language
models such as CLIP. Let us assume f (v) a vision-based
feature extractor, and f (l) a language-based feature extrac-
tor. Thus, for a sample xn with n → {1, . . . , N} and a text

prompt tk of class k → {1, . . . ,K} (for example tk = “a
photo of a {class k}”), the visual and text features are
given by f (v)(xn) and f (l)(tk), respectively. Then, the re-
sulting feature embeddings of the data sample xn is defined
as its probability vector of belonging to class k:

zn = softmax
{
Tz cos

(
f (v)(xn), f

(l)(tk)
)

1→k→K

}
,

(23)

where Tz > 0 is a temperature scaling parameter.

C.2. Optimization algorithm

Using (16) and (21), and in the case of a Dirichlet data dis-
tribution model, the proposed GEM algorithm yields Algo-
rithm 3.

Algorithm 3 GEM-Dirichlet based few-shot classification
algorithm

Input: Compute zn for the dataset samples, initialize
u(0)
n = zn, and ω(0)

k = 1K

for ω = 0, 1, . . . , L↑ 1 do

// Update the Dirichlet parameter for each class
ω(ω+1)
k = MM(u(ω)

·,k ,ω
(ω)
k ), ↗k → {1, . . . ,K},

// Update class proportions

ϑ(ω+1)
k =

1

|Q|
∑

n↑Q
u(ω)
n,k, ↗k → {1, . . . ,K},

// Update assignment vectors for all query samples
L(ω)
n,k =

∑K
i=1(ε

(ω+1)
k,i ↑ 1) ln zn,i

↑
∑K

i=1 ln!(ε
(ω+1)
k,i ) + ln!

(∑K
i=1 ε

(ω+1)
k,i

)

u(ω+1)
n

= softmax
(

1
T

(
L(ω)
n,k + ε

|Q| ln(ϑ
(ω+1)
k )

)

k

)

end for

D. Additional results

D.1. Ablation studies

In this part, we perform ablation studies to illustrate the
impact of the network depth, the effects of the introduced
temperature scaling parameter and the benefits of learning
adaptive hyper-parameters across the unrolled architecture
layers.

• Impact of the unrolled architecture depth

First, we propose to analyze the impact of the number
L of layers of our unrolled architecture on the model
accuracy, model size, and computational time. Table 4
reports the results. Thus, one of the main advantages of
our UNEM model is that a few layers (about 7 or 10) are
enough to achieve good performance. In what follows, the



experiments are conducted using L = 10.

#Layers (L) #Params Acc. Train Time (s) Inference Time/task (s)
3 7 65.6 2.80 3.04 ↓ 10→2
5 11 65.9 3.22 3.09 ↓ 10→2
7 15 66.3 3.46 3.21 ↓ 10→2
10 21 66.4 3.61 3.36 ↓ 10→2
12 25 66.2 4.06 3.45 ↓ 10→2
15 31 66.1 4.29 3.48 ↓ 10→2
18 37 66.2 5.74 3.68 ↓ 10→2

Table 4. Impact of the number of layers (L) on UNEM-Gaussian
performance using mini-ImageNet, 5-shot and ResNet18.

• Effects of temperature scaling

To perform this study, we compare our unrolled archi-
tectures (UNEM-Gaussian as well as UNEM-Dirichlet)
in both cases: (i) without introducing the temperature
scaling parameter (as considered in the original algorithms
PADDLE [32] and EM-Dirichlet [33]); (ii) while incorpo-
rating the temperature scaling (as proposed in our GEM
algorithm).
Tables 5 and 6 depict the accuracy results in vision-only
few-shot setting. Thus, it can be noticed that including the
temperature scaling yields an accuracy improvement, which
may vary from 1% to 3%. Moreover, in the context of
vision-language models whose accuracy results are shown
in Table 7, similar gains (reaching up to 3%), depending on
the target donwstream dataset, are also achieved. This con-
firms again the advantage of incorporating the temperature
scaling in our generalized algorithm.

• Fixed vs adaptive hyper-parameters across layers

One of the key advantages of unrolling algorithms is their
flexibility in optimizing hyper-parameters, while allowing
them to vary across the architecture layers. To show the
potential of such hyper-parameter optimization approach,
we propose to compare the proposed unrolled architectures
(UNEM-Gaussian and UNEM-Dirichlet) in the following
two cases: (i) the hyper-parameters are set fixed across the
layers (as it is generally considered in original iterative
algorithms), (ii) a set of hyper-parameters, adapted to the
different layers, is learned.
Tables 8 and 9 provide the accuracy results for fixed
and adaptive hyper-parameters optimization with vision-
only models. It can be seen that learning adaptive
hyper-parameters yields an accuracy gain of about 2-4%
compared to the case when the hyper-parameters are kept
fixed across layers. Similar comparisons are also performed
with vision-language models as shown in Table 10. In this
context, the improvement achieved by learning adaptive
hyper-parameters often ranges from 1 to 2%.

D.2. Performance under distribution shifts

In Table 11, we include the accuracy of the original PAD-
DLE algorithm [32] and its unrolled version, with tiered-
ImageNet used for pre-training, and a fine-grained classi-
fication dataset (CUB) as well as mini-ImageNet used for
inference. One could observe similar improvements (about
4-7%) brought by UNEM.

D.3. Backbone effect in CLIP

The performance of EM-Dirichlet and UNEM-Dirichlet us-
ing ViT-B/32 as backbone are shown in Table 12. Thus, in
comparison to CLIP with ResNet50 (see Table 3), one may
observe a similar or slightly better accuracy performance
with most datasets. Moreover, the gains brought by UNEM
over the iterative variant are consistent with those observed
with ResNet50 backbone.

E. Illustration and analysis of the learned hyperpa-

rameters

In this part, we propose to illustrate the variations of the
learned hyper-parameters and analyze their orders-of-
magnitude.

• Illustration of the learned hyper-parameters

The evolutions of the learned hyper-parameters ϖ(ω)

and T (ω) with respect to the layer index are illustrated
in Figures 4 and 5 for some downstream image classi-
fication tasks. While Figure 4 shows that the learned
hyper-parameters with CUB (ResNet18), mini-ImageNet
(ResNet18), and mini-ImageNet (WRN28-10) have similar
amplitudes, much different orders-of-magnitude are ob-
served with vision-language models as shown in Figure 5
for some test datasets. Let us recall that the different
learned hyper-parameters, for all datasets, are available
at https://github.com/ZhouLong0/UNEM-
Transductive.

• Analysis of the learned hyper-parameters

Different observations could be made from the previous il-
lustrations. On the one hand, in the case of vision-only
models, it can be seen that the learned hyper-parameters
ϖ(ω) appear quite similar. However, the evolution of T (ω)

values shows different behaviors. Moreover, it is impor-
tant to note that the optimal hyper-parameters also depend
on the pre-training model as observed with mini-ImageNet
(ResNet18) and mini-ImageNet (WRN28-10). On the other
hand, with vision-language models, it can be observed that
both hyper-parameter values ϖ(ω) and T (ω) strongly depend
on the target dataset. Indeed, unlike the vision-only models
where the feature vectors have a fixed size (which is equal
to the dimension of the pre-trained model’s output), the fea-
ture vectors zn in the context of few-shot CLIP have differ-
ent sizes, depending on the number of classes of each target

https://github.com/ZhouLong0/UNEM-Transductive
https://github.com/ZhouLong0/UNEM-Transductive


Temperature scaling Backbone
mini-ImageNet (K = 20) tiered-ImageNet (K = 160)

5-shot 10-shot 20-shot 5-shot 10-shot 20-shot
↘ ResNet-18 66.1 75.4 80.3 49.7 63.2 70.0
↭ 66.4 75.6 80.4 52.3 65.7 73.2

↘ WRN28-10 71.9 78.9 82.8 52.0 65.8 73.0
↭ 71.6 79.2 83.7 54.1 66.8 74.7

Table 5. Effects of the temperature scaling on the accuracy performance of UNEM-Gaussian approach applied to mini-ImageNet and
tiered-ImageNet datasets.

Temperature scaling
CUB (K = 50)

5-shot 10-shot 20-shot
↘ 78.1 85.2 88.6
↭ 78.5 85.3 88.6

Table 6. Effects of the temperature scaling on the accuracy performance of UNEM-Gaussian approach applied to CUB dataset.
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↘ 90.6 51.9 65.4 95.4 92.0 92.4 79.1 27.5 78.2 88.4
↭ 91.4 53.8 65.3 96.0 95.6 93.4 78.5 30.4 80.0 88.5

Table 7. Effects of the temperature scaling on the accuracy performance of UNEM-Dirichlet approach applied to the vision-language
models.

Params across the layers Backbone
mini-ImageNet (K = 20) tiered-ImageNet (K = 160)

5-shot 10-shot 20-shot 5-shot 10-shot 20-shot
Fixed ResNet-18 62.5 72.5 78.0 49.8 63.6 70.4
Adaptive 66.4 75.6 80.4 52.3 65.7 73.2

Fixed WRN28-10 68.7 77.0 82.0 51.6 64.6 72.1
Adaptive 71.6 79.2 83.7 54.1 66.8 74.7

Table 8. Fixed vs adaptive hyper-parameters setting in the UNEM-Gaussian approach, using mini-ImageNet and tiered-ImageNet datasets.

Params across layers
CUB (K = 50)

5-shot 10-shot 20-shot
Fixed 75.2 82.9 87.1
Adaptive 78.5 85.3 88.6

Table 9. Fixed vs adaptive hyper-parameters setting in the UNEM-Gaussian approach, using CUB dataset.

dataset. For instance, knowing that EuroSAT, Flowers102
and Stanford Cars have 10, 102, and 196 classes, respec-
tively; it can be observed that the smallest (resp. largest)
values of ϖ(ω) are obtained with EuroSAT (resp. Stanford
Cars). These results are expected since, by increasing the
dimension of zn, the magnitude of the log-likelihood term
may increase, and so, a higher value of ϖ(ω) is needed to
mitigate the class-balance bias.

This study shows the dependence of the introduced hyper-
parameters on the target downstream dataset as well as the
pre-training model, and confirms the importance of optimiz-
ing hyper-parameters in both evaluation scenarios.
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Fixed 89.6 52.2 64.8 95.3 95.3 92.3 79.2 31.6 78.0 87.6
Adaptive 91.4 53.8 65.3 96.0 95.6 93.4 78.5 30.4 80.0 88.5

Table 10. Fixed vs adaptive hyper-parameters setting in the UNEM-Dirichlet approach, using the vision-language models.

Method CUB mini-ImageNet
PADDLE [32] 66.0 82.9
UNEM-Gaussian 72.9 87.0

Table 11. Cross-domain evaluation: Accuracy performance on mini-ImageNet and CUB using a model trained on tiered-ImageNet, with a
5-shot setting and a ResNet18 backbone.
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EM-Dirichlet [33] 89.3 54.8 63.9 92.5 92.7 92.8 77.2 27.3 73.9 81.7
UNEM-Dirichlet 91.4 57.5 67.4 95.7 95.2 94.0 80.4 33.8 77.8 88.4

Table 12. Accuracy performance of iterative EM-Dirichlet [33] and our UNEM variant using CLIP ViT-B/32 for feature extraction.

Figure 4. Illustration of the learned hyper-parameters ω(ω) and T (ω) across layers for CUB (with ResNet18 model), mini-ImageNet (with
ResNet18 model) and mini-ImageNet (with WRN28-10 model).



Figure 5. Illustration of the learned hyper-parameters ω(ω) and T (ω) across layers for some datasets with vision-language models.
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