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Appendix
The appendix is structured as follows:
• §1 discusses the limitation and social impact of our

method.
• §2 provides additional details on the architecture of the

proposed model.
• §3 presents more experimental details.
• §4 supplements failure cases analysis and presents more

qualitative results.

1. Limitation and Social Impact
1.1. Limitation
Although UNIALIGN does not achieve SOTA performance
across all benchmarks, it possesses a significant strength:
the utilization of a single encoder for multimodal align-
ment within one training phase, which substantially reduces
model complexity. This strategy not only alleviates the com-
putational burden but also promotes cross-modal learning
through joint training, making it more efficient than training
separate models. While our dependence on semantic simi-
larity between labels may appear restrictive, it effectively
harnesses available data to align modalities without requiring
extensive paired datasets, showcasing UNIALIGN’s innova-
tive use of soft bindings.

1.2. Social Impact
In an age where training a foundation model often demands
dozens of GPUs, UNIALIGN provides a new paradigm that
enables the expansion of a foundational model into multi-
ple domains with high efficiency. By achieving 90% of the
performance of current methods using just four GPUs, our
model not only maintains a compact structure but also makes
cutting-edge AI technology more accessible and sustainable.
This advancement ensures that a wide range of fields can
benefit from advanced multimodal capabilities, driving in-
novation while reducing the environmental impact of AI
development.

2. Architecture
2.1. Modality Tokenizer
Image and Video. We employ the conventional input for-
mat established in the original Vision Transformer (ViT)
architecture. In this framework, images are divided into non-
overlapping patches of size P × P . For video input, we
follow [7, 24] to partition video input into two-frame clips,
and construct spatio-temporal patches of size T×P×P . The

image tokenizer’s weights are inflated to three dimensions
to handle video inputs, which are then projected into spatio-
temporal embeddings. Temporal position embeddings are
added to the original two-dimensional position embeddings.
3D Point Cloud. For 3D point clouds, we sample 8,192
points, grouping them into subclouds using Farthest Point
Sampling (FPS) and k-Nearest Neighbors (KNN) for neigh-
boring points. We construct local patches by sampling 512
sub-clouds, each comprising 32 points. Further, we employ a
mini-PointNet [12] to project these sub-clouds into point em-
beddings. Additionally, we incorporate learnable positional
embeddings on top of these embeddings, serving as inputs
to unified models.
Depth. Single-view depth data is converted into disparity.
The depth is treated as a one-channel image, with image and
depth channels separately converted into patches. To capture
positional information, we incorporate learnable positional
embeddings.
Audio. Audio inputs are sampled at 16 kHz, and a Mel
spectrogram with 128 frequency bins is extracted using a
25 ms Hamming window with a 10 ms hop length. The
spectrogram, being a two-dimensional signal, is transformed
into an audio embedding using one-dimensional convolution.
Subsequently, we introduce learnable positional embeddings
to capture the spatial structure of the spectrogram.

2.2. Feature Projector
Since the features extracted by the unified modality en-
coder cannot directly match the heterogeneous features of all
partial-modal foundation models, we add a feature projector
composed of multiple learnable linear layers after the final
layer of the student model. This allows the unified features
to effectively align with the features of different foundation
models.

3. More Experimental Details and Results
3.1. Datasets
ImageNet. ImageNet1K [4] is one of the most widely used
datasets for image classification tasks. It contains over 1.2
million images categorized into 1,000 distinct classes, cov-
ering a wide array of objects and scenes. The dataset is
well-known for its role in benchmarking the performance
of various deep learning models in computer vision. Each
class includes hundreds to thousands of images, providing a
rich resource for training and evaluating algorithms. In this
study, we utilize ImageNet1K to explore transfer learning
and evaluate model performance on image classification.
ULIP-ShapeNet Triplets. The ULIP-ShapeNet Triplets is



sourced from ShapeNet55 [2] as detailed in the work of
[22]. Each instance of the 3D point cloud is constructed
from CAD models. To create anchor images, virtual cameras
are strategically placed around each object. Additionally,
textual information is generated by integrating metadata into
a specific prompt template. This dataset covers around 52.5k
individual 3D point cloud instances.
ModelNet40. The ModelNet40 dataset [20] is a significant
benchmark in the field of 3D object classification. It contains
a total of 12,311 CAD models organized into 40 separate cat-
egories, with 9,843 samples allocated for training purposes
and 2,468 for testing. This dataset encompasses a range of
everyday items, including chairs, tables, desks, and various
household objects. Each item is depicted as a 3D point cloud
and includes manual annotations that identify its category.
In this study, our primary focus is on leveraging the test
samples for the purpose of zero-shot classification.
ScanObjectNN. The ScanObjectNN dataset [18] is a vital
asset in the realm of 3D object recognition and segmentation.
It comprises a wide range of 3D object instances captured
using a standard RGB-D camera. This dataset features var-
ious household items, furniture, and typical indoor objects.
Each object instance is equipped with comprehensive seman-
tic and instance-level annotations, enhancing the dataset’s
utility. Overall, it contains 2,902 objects distributed among
15 unique categories. In this study, we leverage the vari-
ant outlined by [23] for zero-shot classification, following
the methodology proposed in [10], which includes 581 test
shapes across these 15 categories.
SUN-RGBD. We leverage paired RGB and depth images,
along with the corresponding class labels, sourced from the
SUN-RGBD dataset [15]. In our training process, we utilize
the training set, which consists of approximately 5,000 sam-
ples. To evaluate the classification performance, we use the
test set referred to as SUN Depth-only, which contains 4,660
samples. During testing, we focus exclusively on depth data
as input and develop classification templates based on the 19
scene categories present in the dataset.
NYU-Depth v2. We utilize the depth maps from the NYU-
Depth v2 Depth-only test set [14], which contains 654 sam-
ples for our evaluation. The dataset consists of 16 semantic
classes, and we build on the approach detailed in previous
studies [7, 9] to implement a 10-class classification scheme.
Notably, the “others” category aggregates seven different
semantic classes: [’computer room’, ’study’, ’playroom’,
’office kitchen’, ’reception room’, ’lobby’, ’study space’].
For classification purposes, we calculate the similarity for
the “others” class by identifying the maximum cosine simi-
larity among these seven class names.
Audioset. For our study, we leverage the Audioset dataset [5]
for both training and assessment. This dataset is composed
of 10-second video clips collected from YouTube and is
annotated with 527 unique classes. It is organized into three

predefined splits: an unbalanced training set with around
2M videos, a balanced training set containing approximately
20k videos, and a test set with about 18k videos. Due to the
unavailability of some videos for download, we finally have
0.5M/18k/17k for these three splits. We utilize the training
splits to develop our model, while the test split is reserved for
evaluation. During the evaluation process, as well as when
using textual data as anchor input in training, we incorporate
textual class labels along with associated templates.
ESC 5-folds. The ESC50 dataset [5] is a well-established
benchmark in the area of environmental sound classifica-
tion. It includes a collection of 2,000 sound recordings, or-
ganized into 50 distinct categories that encompass various
types of sounds, such as animal calls, natural soundscapes,
and sounds produced by humans. Each category contains
40 audio samples, each lasting five seconds. The dataset is
designed with a predefined 5-fold evaluation scheme, where
each fold consists of 400 test audio clips. In this study, we
focus on evaluating zero-shot predictions across the five
folds.
AudioCaps. This dataset [8] features audio-visual clips
obtained from YouTube, paired with textual descriptions.
The clips are sourced from the Audioset dataset. For this
study, we followed the dataset splits described in prior re-
search [11], specifically removing clips that overlap with the
VGGSound dataset. Consequently, we have a total of 813
clips in the test split designated for zero-shot evaluation.
VGGSound. This audio-visual dataset [3] is compiled from
YouTube and includes roughly 200,000 video clips, each
with a duration of about 10 seconds. The clips are classified
into 309 different categories, which range from human ac-
tivities to sounds made by objects and interactions between
people and objects. In this study, we use the audio and video
from the training set for joint training.
MSRVTT. The MSR-VTT dataset [21] is a comprehen-
sive resource designed for open-domain video captioning,
comprising 10,000 video clips categorized into 20 different
themes. Each clip is accompanied by 20 English sentences,
resulting in approximately 29,000 distinct words across all
captions. The dataset is typically divided into three parts:
6,513 clips are allocated for training, 497 for validation,
and 2,990 for testing. In line with previous research [9], we
present our results based on the 1K-A test set.
UCF101. The UCF101 dataset [16] is a widely recognized
benchmark for action recognition tasks. It is an expanded
version of the UCF50 dataset, comprising 13,320 video clips
categorized into 101 distinct classes. These classes are orga-
nized into five main groups: body movements, interactions
between individuals, interactions involving objects, musi-
cal instrument performances, and various sports. All video
frames are captured at a resolution of 320×240 pixels and a
frame rate of 25 frames per second, with clips sourced from
YouTube. In this study, we evaluate zero-shot video classi-



Image Video
3D

Point Cloud Depth Audio

Optimizer AdamW
Optimizer momentum β1 = 0.9, β2 = 0.98
Peak LR 2e-4
Weight decay 0.05⋄

Batch size 2048⋆

Warmup steps 10,000
Total epochs 100

Modality augmentation

RandResizeCrop(size=224)
RandHorizontalFlip(p=0.5)
RandAugment(m=9,n=2)

ColorJitter(0.4)
RandErasing(p=0.25)

RandShortSideScale(min=256, max=340)
RandCrop(size=224)

RandHorizontalFlip(p=0.5)
RandAugment(m=9,n=2,p=0.3)

RandErasing(p=0.25)

RandDropout
RandScale
RandShift

RandPerturb
RandRotate

RandResizeCrop(size=224)
RandHorizontalFlip(p=0.5)
RandAugment(m=9, n=2)

RandErasing(p=0.25)

Frequency masking(12)
Time masking(48)

NoiseAug

Image augmentation - - RandResizeCrop(size=224)

RandResizeCrop(size=224)
RandHorizontalFlip(p=0.5)
RandAugment(m=9,n=2)

ColorJitter(0.4)
RandErasing(p=0.25)

RandShortSideScale(min=256, max=340)
RandCrop(size=224)

RandHorizontalFlip(p=0.5)
RandAugment(m=9, n=2, p=0.3)

Table 1. Training hyper-parameters for each modality. ⋆ The total batch size is the sum of the mini-batches of all modalities involved in the
weighted sampling. ⋄ Weight decay excludes parameters for BatchNorm, LayerNorm, bias terms, and logit scale.

fication on the validation split. Subsequently, we fine-tune
the pretrained model on the training split and evaluate the
supervised results.

3.2. Data Input and Augmentation
Image and Video. Building on previous research [6, 17],
we utilize a resolution of 224×224 and apply standard aug-
mentations to both images and videos. For video input, we
sample 8 frames at stride 8. To ensure consistency in modal
knowledge distillation from various partial modal foundation
models, we use the same random seed for data augmentation
as that of the foundation model. Additionally, we disable
Mixup and Cutmix, following the guidelines in [19].
3D Point Cloud. As discussed in 2.1, we uniformly sam-
ple 8,192 points from the 3D shape input and construct
local patches using the Farthest Point Sampling (FPS) and
k-Nearest Neighbors (kNN) algorithms. During training, we
apply standard augmentation to the point clouds, as described
in [22], ensuring that the random seed is consistent with that
used in the partial modal foundation model.
Depth. As mentioned in 2.1, the depth maps are converted
into disparity maps. Following the methodology outlined
by [9], we apply strong augmentation to the depth data,
maintaining the same random seed as used in the partial
modal foundation model.
Audio. In accordance with [9], we sample a 5-second audio
clip and apply spectrogram masking during training. The
maximum time mask length is set to 48 frames, and the
maximum frequency mask length is set to 12 bins. Unlike [9],
we maintain the same random seed as the partial modal
foundation model and disable the Mixup technique.

3.3. Training Setup
In Table 1, we list the hyperparameters used in joint training.
Our experiments were done on 40 GB Tesla A100 GPU
clusters. Our base network is initialized based on the CLIP
model.

3.4. Additional Ablations
Feature Projector. We conducted ablation studies to eval-
uate the effectiveness of different projection methods used
after the unified modality encoder. As shown in Table 2,
the linear projection achieved an accuracy of 45.2% on the
SUN-D dataset and 55.3% on ModelNet40, while the MLP
projection slightly outperformed it with 45.8% and 55.9%,
respectively. These results indicate that the feature projec-
tor plays a crucial role in aligning unified features with the
heterogeneous features of various foundation models, en-
hancing overall model performance.

# Proj Head SUN-D ModelNet40

1 Linear 45.2 55.3
2 MLP 45.8 55.9

Table 2. Ablation studies on feature projector.

Teacher Teacher SUN-D ModelNet40
Method

Modality Model Top-1 Top-1

Baseline - - 42.3 40.9
+ depth teacher depth MultiMAE∗ 43.3 41.1
+ depth teacher depth ViT-LENSL 45.1 41.3

+ 3d teacher 3D RECON 42.6 52.7
+ 3d teacher 3D ULIP 42.9 55.1

+ depth teacher & depth ViT-LENSL

+ 3d teacher + 3D + ULIP
45.4 55.6

Table 3. Ablation studies about knowledge distillation from partial
modal foundation models. ∗denotes our implementation of training
MultiMAE on SUN RGB-D.

Knowledge Distillation from Partial-Modal Foundation
Models. In our ablation study, detailed in Table 3, we ex-
plored the effects of knowledge distillation using different
partial modal foundation models. Our baseline model, which
includes depth experts and 3D experts, was trained without
knowledge distillation from partial modal foundation mod-
els. Based on this baseline, we developed five variants: two
single-teacher distilled models and one multi-teacher dis-
tilled model. Using the MultiMAE [1] depth teacher showed
improvements, with further gains from ViT-LENSL [9]. For
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Figure 1. Failure cases for cross-modal retrieval (§4) .

3D teachers, RECON [13] and ULIP [22] both enhanced
performance. The combination of ViT-LENSL and ULIP
achieved the best overall results. The performance difference
between different teacher models is mainly due to their dif-
ferent training methods. MultiMAE and RECON involve
masked self-supervised learning, resulting in features that
cannot be effectively processed by a simple feature projec-
tor. These findings highlight the benefits of using multiple
partial modal foundation models in multimodal knowledge
distillation.

4. Failure Cases and More Qualitative Results
As illustrated in Fig. 1 , several scenarios can lead to failure
cases in cross-modal retrieval. First, when the category labels
of different modalities are overly similar yet semantically
distinct, confusion can arise during the retrieval process. Ad-
ditionally, significant discrepancies between the category
labels of different modalities may result in the inability to
find semantically similar matching labels, leading to errors.
Finally, if the retrieval task requires fine-grained recogni-
tion capabilities, candidates with similar appearances but
different semantics can mislead the process. Nevertheless,
our method can still produce accurate predictions in most
scenarios, as shown in Fig. 2 .
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