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Supplementary Material

7. Introduction

In this supplementary material, we provide additional de-
tails and insights into the work presented in the paper.

• Sec. 8 details the image preprocessing steps and explores
potential applications for generating avatars.

• Sec. 9 discusses related solutions, highlighting their limi-
tations, the differences from our approach, and the advan-
tages these differences bring.

• Sec. 10 presents comprehensive experimental results, in-
cluding qualitative comparisons with image-to-3D meth-
ods, quantitative evaluations against video diffusion mod-
els, and various ablation studies.

Furthermore, we visualize the spatial and temporal in-
consistencies in video diffusion models and demonstrate the
improvements introduced by our method (Sec. 9.2). In the
ablation study, we evaluate the adaptability of our method
to different video diffusion models and its applicability to
in-the-wild datasets.

8. Additional Implementation Details

Pre-process. Based on [15, 17, 61], the preprocessor re-
moves the background and estimates the pose and FLAME
parameters of input portrait. As shown in Fig. 11, the pre-
process of each image contains two steps: 1) Background
Removal: Given a portrait image, we first use Rembg [61]
to remove the background and only retain the foreground
portrait; 2) Pose Estimation: Then, we use MICA [92] and
EMOCA [17] to estimate the FLAME shape, expression
and pose parameters of portrait. In training, we use the
carved image as the input of video diffusion and initial-
ize the learnable shape parameter with estimated FLAME
shape.

Application. Once optimized, the parameters of the an-
imatable Gaussian head are fixed, enabling real-time ani-
mation and rendering of the avatar using motion and cam-
era sequences. These motion sequences incorporate expres-
sion and pose parameters from FLAME 2020 [40]. Follow-
ing HeadStudio [90], we employ advanced models such as
face-to-FLAME [17, 19, 92], speech-to-FLAME [83], and
text-to-speech [1] to convert video, speech, and text into
FLAME animation inputs. As a result, the generated avatar
supports multimodal control, demonstrating practical appli-
cations in real-world scenarios.

Input Image Background Removal Pose Estimation

Figure 11. Pre-process. Given a portrait image, we first remove
its background and then estimate the FLAME parameter.
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Figure 12. 2D Image Generation with SDS-based Loss. From
left to right: reference image, SDS [58], ISM [42], NFSD [35] and
video diffusion generation [73].

9. Discussion
9.1. Discussion with Related Solutions
DreamFusion v.s. Zero-1-to-A. In Fig. 12, we compare
2D image generation results using SDS [58], ISM [42], and
NFSD [35]. Notably, NFSD employs negative prompts to
suppress unwanted noise in the diffusion score. We imple-
ment this by treating reference image with data augmen-
tation (e.g., blur, brightness adjustment, Gaussian noise)
as negative prompts. Compared to video diffusion gener-
ation, results from SDS-based loss exhibit issues of over-
smoothing and over-saturation. We attribute this to addi-
tional temporal modules introduced in portrait video diffu-
sion, which may adversely affect score distillation. This
limitation motivates us to explore alternative solutions.
Instruct-NeRF2NeRF (IN2N) v.s. Zero-1-to-A.
IN2N [25] introduces a 3D editing method called iter-
ative dataset update, which alternates between editing
the ground-truth dataset and optimizing the 3D scene.
In contrast, Zero-1-to-A is a 4D generation method that
progressively builds a pseudo ground-truth dataset while
optimizing the 4D avatar. Different from the editing task,
the lack of consistent input in the generation task creates
a negative cycle in iterative dataset update, leading to in-
correct convergence (e.g., misaligned eyes and inability to
open the mouth, as shown in the fifth column of Fig. 8). To
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Figure 13. Visualization of Spatial and Temporal Inconsistencies in Video Diffusion Models. Portrait video diffusion exhibits spatial
inconsistencies, such as incorrect eye positioning in side views (green boxes), and temporal inconsistencies, evident in significant changes
triggered by minor facial expressions (blue boxes).

Table 2. Quantitative Evaluation of Avatar Animation. We
evaluate ID consistency, temporal smoothness, and rendering
speed, demonstrating that our method is able to enhance the per-
formance of portrait video diffusion.

Face Animation ID " Motion " Speed "
AniPortrait [73] 0.5081 0.8410 0.52 FPS

Follow-Your-Emoji [53] 0.4988 0.8934 0.56 FPS
Ours (w. [53]) 0.5000 0.9187 71 FPS

address this, we propose a simple-to-complex progressive
learning strategy that breaks this cycle and significantly
improves generation performance.

9.2. Discussion on the Motivation
In Fig. 13, we show the spatial and temporal inconsistencies
in video diffusion models and demonstrate the improve-

ments achieved by our method. On the left of Fig. 13, spa-
tial inconsistencies are shown by fixing the expression and
varying the camera pose. Ideally, the portrait’s expression
should remain unchanged. However, as the camera pose
shifts, the iris incorrectly looks left, and teeth that were ini-
tially absent appear (highlighted in green boxes). On the
right, temporal inconsistencies are illustrated by fixing the
camera pose and varying the expression. Ideally, the por-
trait should deform smoothly and accurately. Instead, even
with minor changes, such as gradually opening the mouth,
the generated video exhibits abrupt and incorrect variations
(highlighted in blue boxes). With SymGEN, we achieve im-
provements in video generation under large pose changes
and exaggerated expressions, resulting in a spatially and
temporally consistent pseudo-ground truth dataset.

In summary, video diffusion models [53, 73] suffer from
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Figure 14. Comparisons with Image-to-3D Methods. Our method delivers comparable performance in texture reconstruction while
achieving superior 3D consistency.
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Figure 15. Comparisons with Portrait3D [24]. Our method
matches the performance of Portrait3D while providing animat-
able avatars, enabling a wider range of applications.

severe spatial and temporal inconsistencies, making them
unsuitable for direct 4D avatar reconstruction. Our pro-
posed SymGEN framework iteratively constructs a consis-
tent dataset, enabling the reconstruction of 4D avatars.

10. Additional Experiments
10.1. Comparisons with Image-to-3D Methods
In Fig. 14, we compare our method with diffusion-
based image-to-3D approaches, including Zero-1-to-3 [46],
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Figure 16. Evaluation on Different Video Diffusion Models.
Our method demonstrates its effectiveness by seamlessly adapting
to various video diffusion models.

Magic123 [59], DreamCraft3D [67], and Wonder3D [49].
We reproduce Zero-1-to-3, Magic123, and DreamCraft3D
using threestudio† and implement Wonder3D with NeuS
following the official guidelines†. The results show that

†https://github.com/threestudio-project/threestudio
†https://github.com/xxlong0/Wonder3D



our Zero-1-to-A delivers comparable texture fidelity and
superior geometry reconstruction, leveraging a head prior
model.
Comparisons with Portrait3D. Portrait3D [24] is a
diffusion-based image-to-avatar method. However, as the
code is not yet open-sourced, we could not reproduce its
results for the avatar generation benchmark [44, 90]. In
Fig. 15, we compare our method with Portrait3D using
results captured from its official project†. Our method
achieves comparable performance while offering animat-
able avatars, enabling broader applications than Portrait3D.

10.2. Comparisons with Video Diffusion Methods.
In Tab. 2, we quantitatively evaluate ID consistency, tem-
poral smoothness, and rendering speed. ID consistency
(ID) is measured using cosine similarity of identity em-
beddings, while temporal smoothness (Motion) is evaluated
using a stability score based on frequency analysis of esti-
mated 2D motion. Higher low-frequency energy indicates
greater video stability (details in [47]). The evaluation is
conducted on 18 samples and 300 frames from real-world
portrait videos [83]. Our method demonstrates improved
ID consistency, temporal smoothness, and rendering speed,
highlighting the effectiveness of Zero-1-to-A.

10.3. Additional Ablations
Evaluation on Different Video Diffusion Models. In
Fig. 16, we compare results using different video diffusion
models (AniPortrait [73] and Follow-Your-Emoji [53]). No-
tably, using AniPortrait achieves better color fidelity to
the reference image than using Follow-Your-Emoji. Our
method adapts seamlessly to various video diffusion mod-
els, effectively generating animatable avatars and demon-
strating robust performance.
Evaluation on in-the-wild Cases. We further evaluate our
method on a wide range of in-the-wild cases. Specifically,
we sampled multiple portraits from the FFHQ dataset [34],
with results shown in Fig. 17. The results demonstrate that
our approach is broadly applicable across genders and di-
verse ethnic groups.

†https://jinkun-hao.github.io/Portrait3D/



Figure 17. Evaluation on in-the-wild Cases.
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