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1. Additional Experimental Results

We show more visual results of general benchmarks for Stu-
dent Splatting and Scooping (SSS) against selected base-
lines: 3D Gaussian Splatting (3DGS) [7], 3D Half-Gaussian
Splatting (3DHGS) [10], Generalized Exponential Splat-
tin (GES) [4] and 3D Gaussian Splatting as Markov Chain
Monte Carlo (3DGS-MCMC) [8] in Fig. 1. For (a) in Fig. 1,
there are a few food residues in the metal bowl. Only
3DGS-MCMC and SSS can successfully restore these de-
tails. Furthermore, SSS also achieves a better reconstruc-
tion of colors than 3DGS-MCMC with these residues. SSS
is the only method that can reproduce the sharp details of
the chair refracted in the transparent water glass in Fig. 1
(b). For (c) in Fig. 1, the difficulty lies in reconstructing
the details of the upper wall edge and the items on the cab-
inet (texts, etc.). Considering these two difficulties, SSS
performs best in this scenario. SSS can also ensure that the
details at the edge of the image are restored to the greatest
extent, which is reflected in (d) and (e) of Fig. 1. In addi-
tion, SSS is also the best for reconstructing pure color areas
(sky, wall, etc.).

We have illustrated the results of the Train scene in the
Tanks & Temples dataset [9] in the main context for the
varying component numbers experiment. Here we further
show two more scenes (room from Mip-MeRF 360 [2]
and drjohnson from Deep Blending [6]) in Figs. 2 and 3.
In Fig. 2, the difficulty of 3D reconstruction lies in the tex-
ture of the carpet. Both 3DGS, 3DHGS, and GES can only
restore the approximate shape but cannot take into account
the details when the number of components is small. 3DGS-
MCMC and SSS can restore the details of the carpet. How-
ever, because SSS has a scooping operation, the carpet it re-
constructs has a more realistic texture. 3DGS, 3DHGS, and
GES are completely unable to reconstruct quality results in
the setting of 80k to 208k components in Fig. 3. The recon-
struction of 3DGS-MCMC is good enough but loses some
details (window gaps inside the basket marked area), while
SSS is still the best method for capturing details.
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Method \ Scene bicycle bonsai counter garden kitchen room stump average
3DGS 25.25 31.98 28.70 27.41 30.32 30.63 26.55 28.69
Mip-NeRF 24.37 33.46 29.55 26.98 32.23 31.64 26.40 29.23
Scaffold-GS 24.50 32.70 29.34 27.17 31.30 31.93 26.27 28.84
3DHGS 25.39 33.30 29.62 27.68 32.17 32.12 26.64 29.56
3DGS-MCMC 26.15 32.88 29.51 28.16 32.27 32.48 27.80 29.89
SSS 25.68 33.50 29.87 28.09 32.43 32.57 27.17 29.90

Table 1. PSNR results for every scene in Mip-NeRF 360
dataset. The red, orange, and yellow colors represent the top three
results. Competing metrics are extracted from respective papers,
and ours are reported as the average of three runs.

1.1. Detailed Results on Each Scene

We show detailed comparisons between our method
and the baselines on every scene on Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index Metric
(SSIM) [14], and Learned Perceptual Image Patch Similar-
ity (LPIPS) [16] metrics among three datasets (Mip-NeRF
360 [2], Tanks & Temples [9], Deep Blending [6]) in Tabs. 1
to 6.

Note we only include baselines that provide detailed
evaluation scores on each scene. These baselines are Mip-
NeRF [1], 3DGS [7], Scaffold-GS [11], 3DHGS [10] and
3DGS-MCMC [8]. This is due to the intrinsic randomness
in the training of these methods. When we re-train the mod-
els ourselves and often obtain slightly different results from
their papers. Therefore, we use the results reported in their
original papers.

Overall, our method outperforms all the baselines. A
close second is 3DGS-MCMC, which is a state-of-the-art
model recently. There are some baselines that outperform
both our method and 3DGS-MCMC on individual scenes
under some metrics, but overall, our method and 3DGS-
MCMC are the best and second best methods.

Beyond the selected methods for baseline, we do realize
that there might be other methods that are not included here
but achieve higher scores on certain scenes and metrics, es-
pecially when it comes to specific application settings, e.g.
3D reconstruction. However, our goal here is to restrict our
comparison to the methods that aim to improve 3DGS on
its fundamental formulation and can be potentially used as
a generic-purposed component.
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(a) Counter from
Mip-NeRF 360 [2]

(b) Kitchen from
Mip-NeRF 360 [2]

(c) Room from
Mip-NeRF 360 [2]

(d) Train from
Tanks & Temples [9]

(e) Playroom from
Deep Blending [6]

Figure 1. Visual comparison. (a) SSS restores the best details inside the metal bowl. (b) SSS is the only one that can reconstruct the
details of the chair refracted in the transparent cup. (c) The reconstruction of the wall edge (bright blue box) and the font were both done
best by SSS. (d) SSS’s details on the distant woods and the reconstruction of the sky are the best. (e) The reconstruction of the pattern on
the wall is SSS at its best.

Method \ Scene bicycle bonsai counter garden kitchen room stump average
3DGS 0.771 0.938 0.905 0.868 0.922 0.914 0.775 0.870
Mip-NeRF 0.685 0.941 0.894 0.813 0.920 0.913 0.744 0.844
Scaffold-GS 0.705 0.946 0.914 0.842 0.928 0.925 0.784 0.848
3DHGS 0.768 0.950 0.909 0.868 0.930 0.921 0.770 0.873
3DGS-MCMC 0.810 0.950 0.920 0.890 0.940 0.940 0.820 0.900
SSS 0.798 0.956 0.926 0.882 0.939 0.938 0.813 0.893

Table 2. SSIM results for every scene in Mip-NeRF 360 dataset.
The red, orange, and yellow colors represent the top three results.
Competing metrics are extracted from respective papers, and ours
are reported as the average of three runs.

1.2. Detailed Results on Varying Component Num-
bers

We show detailed results of varying component numbers,
on every scene with PSNR, SSIM, and LPIPS in Mip-NeRF

Method \ Scene bicycle bonsai counter garden kitchen room stump average
3DGS 0.205 0.205 0.204 0.103 0.129 0.220 0.210 0.182
Mip-NeRF 0.301 0.176 0.204 0.170 0.127 0.211 0.261 0.207
Scaffold-GS 0.306 0.185 0.191 0.146 0.126 0.202 0.284 0.220
3DHGS 0.202 0.180 0.201 0.104 0.125 0.220 0.215 0.178
3DGS-MCMC 0.180 0.220 0.220 0.100 0.140 0.250 0.190 0.190
SSS 0.173 0.151 0.156 0.009 0.104 0.167 0.174 0.145

Table 3. LPIPS results for every scene in Mip-NeRF 360
dataset. The red, orange, and yellow colors represent the top three
results. Competing metrics are extracted from respective papers,
and ours are reported as the average of three runs.

360, Tanks & Temples, and Deep Blending datasets. Since
we need to re-train all methods for comparison, we ensure
the implementation is as fair as possible. Based on whether
codes are open sourced and furthermore how easily they can
be adapted for comparison (explained later), we selected



Dataset - Scene Tanks&Temples Deep Blending
Method train truck average drjohnson playroom average
3DGS 21.09 25.18 23.14 28.77 30.04 29.41
Mip-NeRF 19.52 24.91 22.22 29.14 29.66 29.40
Scaffold-GS 22.15 25.77 23.96 29.80 30.62 30.21
3DHGS 22.95 26.04 24.49 29.32 30.20 29.76
3DGS-MCMC 22.47 26.11 24.29 29.00 30.33 29.67
SSS 23.32 26.41 24.87 29.66 30.47 30.07

Table 4. PSNR results for every scene in Tanks & Temples and
Deep Blending dataset. The red, orange, and yellow colors rep-
resent the top three results. Competing metrics are extracted from
respective papers, and ours are reported as the average of three
runs.

Dataset - Scene Tanks&Temples Deep Blending
Method train truck average drjohnson playroom average
3DGS 0.802 0.879 0.841 0.899 0.906 0.903
Mip-NeRF 0.660 0.857 0.759 0.901 0.900 0.901
Scaffold-GS 0.822 0.883 0.853 0.907 0.904 0.906
3DHGS 0.827 0.887 0.857 0.904 0.907 0.905
3DGS-MCMC 0.830 0.890 0.860 0.890 0.900 0.890
SSS 0.850 0.897 0.873 0.905 0.909 0.907

Table 5. SSIM results for every scene in Tanks & Temples and
Deep Blending dataset. The red, orange, and yellow colors rep-
resent the top three results. Competing metrics are extracted from
respective papers, and ours are reported as the average of three
runs.

Dataset - Scene Tanks&Temples Deep Blending
Method train truck drjohnson playroom
3DGS 0.218 0.148 0.183 0.244 0.241 0.243
Mip-NeRF 0.354 0.159 0.257 0.237 0.252 0.245
Scaffold-GS 0.206 0.147 0.177 0.250 0.258 0.254
3DHGS 0.197 0.141 0.169 0.240 0.243 0.242
3DGS-MCMC 0.240 0.140 0.860 0.330 0.310 0.320
SSS 0.166 0.109 0.138 0.249 0.245 0.247

Table 6. LPIPS results for every scene in Tanks & Temples
and Deep Blending dataset. The red, orange, and yellow colors
represent the top three results. Competing metrics are extracted
from respective papers, and ours are reported as the average of
three runs.

3DGS [7], GES [4], 3DHGS [10] and 3DGS-MCMC [8]
as the baselines. We use δ to represent the number of the
initial components from Structure from Motion (SFM) re-
construction [13] for different scenes.

The results are shown in Tabs. 7 to 12. In total, there
are 11 (scenes) × 5 (component numbers) × 3 (metrics) =
165 comparisons. For the absolute majority, SSS achieves
the best. Furthermore, when it is not the best method, it
is the close second to 3DGS-MCMC. This is an exhaus-
tive comparison of many datasets, metrics, and more im-
portantly different numbers of components.

1.3. Ablation Study
We conduct an ablation study to show the effectiveness of
various components in SSS. We report the results on one
dataset in Tab. 13. Universally, by only replacing Gaus-

Scene - Components Mip-NeRF 360 - average
Method δ 1.4δ 1.8δ 2.2δ 2.6δ
3DGS 19.16 20.32 20.50 21.22 21.75
GES 20.59 21.60 22.78 23.52 23.86
3DHGS 19.63 20.33 20.39 20.99 22.12
3DGS-MCMC 27.47 27.89 28.18 28.39 28.56
SSS 27.72 28.14 28.43 28.66 28.84
Scene - Components Mip-NeRF 360 - bicycle
Method 54k 75k 97k 118k 140k
3DGS 18.32 18.53 18.62 18.75 18.52
GES 18.31 18.29 18.20 18.13 18.19
3DHGS 18.45 18.72 18.62 18.61 18.50
3DGS-MCMC 23.04 23.42 23.74 23.97 24.17
SSS 22.97 23.29 23.53 23.71 23.95
Scene - Components Mip-NeRF 360 - bonsai
Method 206k 280k 360k 440k 520k
3DGS 20.50 22.93 23.39 23.97 24.54
GES 22.47 24.12 25.51 27.02 29.27
3DHGS 21.37 22.90 23.45 24.62 24.82
3DGS-MCMC 31.14 31.56 31.85 32.03 32.17
SSS 31.67 32.21 32.52 32.75 32.94
Scene - Components Mip-NeRF 360 - counter
Method 155k 224k 288k 352k 416k
3DGS 18.26 19.07 18.84 20.78 23.73
GES 19.68 23.64 26.35 26.74 27.45
3DHGS 17.77 18.36 18.89 20.48 23.59
3DGS-MCMC 28.38 28.68 28.82 28.93 29.03
SSS 28.71 29.06 29.21 29.39 29.48
Scene - Components Mip-NeRF 360 - garden
Method 138k 196k 252k 308k 364k
3DGS 16.73 17.34 17.49 17.81 18.05
GES 16.62 16.94 17.24 17.58 17.92
3DHGS 17.36 17.44 17.70 18.25 18.49
3DGS-MCMC 25.23 25.70 26.02 26.26 26.47
SSS 25.32 25.80 26.17 26.41 26.64
Scene - Components Mip-NeRF 360 - kitchen
Method 241k 336k 432k 528k 624k
3DGS 21.19 22.70 22.10 22.63 22.70
GES 24.78 25.74 27.65 29.34 29.54
3DHGS 23.19 24.20 21.40 21.61 22.60
3DGS-MCMC 30.11 30.78 31.05 31.26 31.45
SSS 30.84 31.33 31.64 31.77 31.97
Scene - Components Mip-NeRF 360 - room
Method 112k 154k 198k 242k 286k
3DGS 18.89 21.41 22.42 23.78 23.76
GES 22.60 22.93 24.98 26.60 25.51
3DHGS 19.20 20.37 22.27 22.83 26.31
3DGS-MCMC 30.72 30.98 31.26 31.45 31.54
SSS 30.98 31.34 31.65 31.92 31.96
Scene - Components Mip-NeRF 360 - stump
Method 32k 44.8k 57.6k 70.4k 83.2k
3DGS 20.21 20.26 20.61 20.82 20.92
GES 19.67 19.55 19.51 19.25 19.13
3DHGS 20.08 20.31 20.42 20.52 20.53
3DGS-MCMC 23.64 24.08 24.51 24.84 25.09
SSS 23.57 23.95 24.31 24.66 24.91

Table 7. PSNR results of varying component numbers experi-
ments for every scene in the Mip-NeRF 360 dataset.
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(a) 112k components (b) 154k components (c) 198k components (d) 242k components (e) 286k components

Figure 2. Visual results of all methods with varying component numbers of room scene from Mip-NeRF 360. Only 3DGS-MCMC
and SSS can restore the details of the carpet, but the result of SSS obviously has a more realistic carpet texture.

sians with Student’s t distributions (SGD+t-distribution), it
already outperforms Mip-NeRF, 3DGS, and GES, demon-
strating improved expressivity. Further with SGHMC, it is
already the best method, showing the advantage of the pro-
posed sampling and the importance of a good sampler in the
optimization process. Finally, adding negative components
further improves the results.

The detailed results of Ablation Study (effect of each
contribution in SSS) on every scene with PSNR, SSIM, and
LPIPS metrics among Mip-NeRF 360, Tanks & Temples
and Deep Blending datasets are in Tabs. 14 to 19.

More ablation We also show comparison of applying
SGHMC with vanilla 3DGS and positive t-distributions
only with Tanks & Temples and Deep Blending datasets to
the ablations (Tab. 20). Replacing SGD with SGHMC al-

ready improves the results. Replacing Gaussians with pos-
itive t-distributions further improves the PSNR but slightly
reduces SSIM and LPIPS. Nonetheless, our Full model is
obviously the best. While individual techniques alone might
provide merely small improvements, SSS as a whole is the
SOTA.

2. Sampling Effects on Learning
When trying the original SGD with only positive Student’s t
components, the learned ν values were not ideal. Consider-
ing Gaussian is simply a Student’s t distribution with fixed
ν = ∞, it shows that ν introduces undesirable local min-
ima. This was mitigated by SGHMC as the friction term
decouples parameters, but the sampling became slow com-
pared to vanilla 3DGS.

We compare the learned ν distributions between
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(a) 80k components (b) 112k components (c) 144k components (d) 176k components (e) 208k components

Figure 3. Visual results of all methods with varying component numbers of drjohnson scene from Deep Blending. 3DGS, 3DHSGS,
and GES are completely unable to reconstruct quality results. The results of 3DGS-MCMC and SSS are relatively better. SSS can restore
more details (such as the window gaps in the blue box) than 3DGS-MCMC.

SGHMC (decoupling) and the 3DGS optimization (no de-
coupling) in Fig. 4. SGHMC learned a distribution across
a wide range, with no mode collapse and fully utilizing
the representation power of t-distribution. 3DGS optimiza-
tion learns a distribution heavily concentrated in some ar-
eas (near 1, likely mode collapse), unable to explore the full
space of t-distribution.

3. Implementation Details

The implementation of SSS is based on open-source codes
of the vanilla 3D Gaussian Splatting (3DGS) [7] and 3DGS-
MCMC [8]. We modified various parts to replace Gaussians
with Student’s t distributions for splatting algorithm [17,
18]. These modifications are adapted to both forward and
backward procedures. We show the formulae of the forward

Figure 4. Sampling effects on learning .



Scene - Components Mip-NeRF 360 - average
Method δ 1.4δ 1.8δ 2.2δ 2.6δ
3DGS 0.584 0.609 0.610 0.626 0.640
GES 0.612 0.630 0.652 0.667 0.674
3DHGS 0.591 0.603 0.599 0.611 0.634
3DGS-MCMC 0.803 0.818 0.829 0.837 0.844
SSS 0.802 0.816 0.827 0.835 0.842
Scene - Components Mip-NeRF 360 - bicycle
Method 54k 75k 97k 118k 140k
3DGS 0.367 0.375 0.377 0.382 0.377
GES 0.372 0.369 0.368 0.368 0.370
3DHGS 0.369 0.374 0.372 0.376 0.373
3DGS-MCMC 0.603 0.630 0.650 0.666 0.679
SSS 0.597 0.620 0.639 0.652 0.666
Scene - Components Mip-NeRF 360 - bonsai
Method 206k 280k 360k 440k 520k
3DGS 0.790 0.822 0.820 0.828 0.838
GES 0.811 0.836 0.861 0.882 0.911
3DHGS 0.802 0.821 0.827 0.837 0.839
3DGS-MCMC 0.938 0.942 0.945 0.947 0.948
SSS 0.938 0.944 0.948 0.950 0.951
Scene - Components Mip-NeRF 360 - counter
Method 155k 224k 288k 352k 416k
3DGS 0.663 0.686 0.682 0.731 0.799
GES 0.696 0.785 0.854 0.866 0.882
3DHGS 0.650 0.667 0.680 0.719 0.788
3DGS-MCMC 0.901 0.907 0.911 0.914 0.916
SSS 0.898 0.906 0.911 0.915 0.917
Scene - Components Mip-NeRF 360 - garden
Method 138k 196k0 252k 308k 364k
3DGS 0.366 0.386 0.399 0.412 0.424
GES 0.373 0.390 0.402 0.416 0.430
3DHGS 0.383 0.394 0.410 0.423 0.433
3DGS-MCMC 0.757 0.784 0.802 0.814 0.823
SSS 0.758 0.785 0.803 0.815 0.825
Scene - Components Mip-NeRF 360 - kitchen
Method 241k 336k 432k 528k 624k
3DGS 0.762 0.796 0.760 0.769 0.776
GES 0.856 0.838 0.875 0.908 0.912
3DHGS 0.811 0.801 0.698 0.706 0.734
3DGS-MCMC 0.919 0.925 0.928 0.930 0.932
SSS 0.921 0.926 0.929 0.932 0.934
Scene - Components Mip-NeRF 360 - room
Method 112k 154k 198k 242k 286k
3DGS 0.720 0.769 0.791 0.813 0.815
GES 0.786 0.797 0.824 0.851 0.839
3DHGS 0.721 0.746 0.783 0.793 0.844
3DGS-MCMC 0.911 0.916 0.920 0.923 0.925
SSS 0.912 0.918 0.923 0.926 0.928
Scene - Components Mip-NeRF 360 - stump
Method 32k 44.8k 57.6k 70.4k 83.2k
3DGS 0.421 0.428 0.439 0.447 0.450
GES 0.391 0.391 0.384 0.376 0.371
3DHGS 0.404 0.414 0.424 0.423 0.424
3DGS-MCMC 0.594 0.624 0.650 0.668 0.683
SSS 0.588 0.616 0.638 0.657 0.670

Table 8. SSIM results of varying component numbers experi-
ments for every scene in the Mip-NeRF 360 dataset.

process (transformation and marginalization) in Sec. 4.1.

Scene - Components Mip-NeRF 360 - average
Method δ 1.4δ 1.8δ 2.2δ 2.6δ
3DGS 0.516 0.494 0.493 0.476 0.461
GES 0.485 0.466 0.439 0.419 0.409
3DHGS 0.511 0.502 0.507 0.493 0.461
3DGS-MCMC 0.284 0.264 0.250 0.239 0.231
SSS 0.284 0.264 0.249 0.237 0.228
Scene - Components Mip-NeRF 360 - bicycle
Method 54k 75k 97k 118k 140k
3DGS 0.640 0.637 0.632 0.631 0.636
GES 0.640 0.642 0.648 0.646 0.642
3DHGS 0.645 0.642 0.644 0.639 0.644
3DGS-MCMC 0.430 0.405 0.387 0.371 0.360
SSS 0.434 0.412 0.394 0.379 0.367
Scene - Components Mip-NeRF 360 - bonsai
Method 206k 280k 360k 440k 520k
3DGS 0.388 0.360 0.361 0.352 0.340
GES 0.370 0.342 0.311 0.284 0.242
3DHGS 0.384 0.366 0.360 0.347 0.343
3DGS-MCMC 0.200 0.189 0.183 0.178 0.175
SSS 0.192 0.181 0.173 0.168 0.164
Scene - Components Mip-NeRF 360 - counter
Method 155k 224k 288k 352k 416k
3DGS 0.499 0.476 0.477 0.427 0.352
GES 0.461 0.359 0.284 0.266 0.242
3DHGS 0.513 0.495 0.480 0.438 0.364
3DGS-MCMC 0.212 0.200 0.192 0.187 0.183
SSS 0.214 0.197 0.188 0.181 0.176
Scene - Components Mip-NeRF 360 - garden
Method 138k 196k 252k 308k 364k
3DGS 0.661 0.640 0.627 0.613 0.601
GES 0.652 0.635 0.623 0.607 0.594
3DHGS 0.649 0.638 0.623 0.606 0.541
3DGS-MCMC 0.296 0.256 0.229 0.209 0.194
SSS 0.297 0.257 0.228 0.207 0.191
Scene - Components Mip-NeRF 360 - kitchen
Method 241k 336k 432k 528k 624k
3DGS 0.347 0.312 0.353 0.344 0.334
GES 0.235 0.260 0.211 0.163 0.156
3DHGS 0.295 0.308 0.413 0.406 0.378
3DGS-MCMC 0.145 0.134 0.129 0.125 0.122
SSS 0.142 0.132 0.125 0.119 0.115
Scene - Components Mip-NeRF 360 - room
Method 112k 154k 198k 242k 286k
3DGS 0.471 0.429 0.403 0.376 0.375
GES 0.404 0.396 0.361 0.325 0.342
3DHGS 0.467 0.449 0.413 0.401 0.343
3DGS-MCMC 0.235 0.223 0.215 0.209 0.203
SSS 0.230 0.217 0.207 0.200 0.195
Scene - Components Mip-NeRF 360 - stump
Method 32k 44.8k 57.6k 70.4k 83.2k
3DGS 0.610 0.605 0.595 0.590 0.588
GES 0.634 0.632 0.639 0.642 0.647
3DHGS 0.627 0.619 0.612 0.612 0.613
3DGS-MCMC 0.474 0.442 0.415 0.395 0.379
SSS 0.481 0.451 0.427 0.406 0.390

Table 9. LPIPS results of varying component numbers experi-
ments for every scene in the Mip-NeRF 360 dataset.



Scene - Components Tanks&Temples - average
Method δ 1.4δ 1.8δ 2.2δ 2.6δ
3DGS 15.70 15.79 15.88 16.37 16.64
GES 16.74 17.47 17.80 18.38 18.71
3DHGS 15.13 15.26 15.36 15.55 15.69
3DGS-MCMC 23.18 23.53 23.65 23.84 23.93
SSS 23.67 24.03 24.19 24.35 24.40
Scene - Components Tanks&Temples - train
Method 182k 252k 324k 396k 468k
3DGS 15.20 15.53 15.58 16.45 16.92
GES 18.15 19.39 19.94 21.14 21.58
3DHGS 14.42 14.62 14.75 15.05 15.24
3DGS-MCMC 21.72 22.07 22.03 22.24 22.34
SSS 22.46 22.74 22.84 22.92 22.97
Scene - Components Tanks&Temples - truck
Method 136k 196k 252k 308k 364k
3DGS 16.20 16.06 16.18 16.29 16.36
GES 15.32 15.54 15.66 15.62 15.85
3DHGS 15.84 15.90 15.97 16.05 16.13
3DGS-MCMC 24.64 24.99 25.27 25.44 25.53
SSS 24.88 25.33 25.53 25.74 25.88
Scene - Components Deep Blending - average
Method δ 1.4δ 1.8δ 2.2δ 2.6δ
3DGS 15.95 16.05 16.33 16.60 17.06
GES 15.99 16.10 16.55 17.38 17.23
3DHGS 16.22 16.63 16.54 18.02 18.07
3DGS-MCMC 28.38 28.82 29.11 29.17 29.35
SSS 28.69 29.08 29.29 29.41 29.67
Scene - Components Deep Blending - drjohnson
Method 80k 112k 144k 176k 208k
3DGS 16.66 16.64 17.05 16.91 17.34
GES 16.43 16.84 17.13 17.41 18.05
3DHGS 17.17 17.29 17.37 19.19 19.82
3DGS-MCMC 28.15 28.62 28.83 28.90 28.94
SSS 28.79 29.05 29.19 29.43 29.42
Scene - Components Deep Blending - playroom
Method 37k 51.8k 66.6k 81.4k 96.2k
3DGS 15.23 15.45 15.61 16.28 16.78
GES 15.56 15.36 15.96 17.34 16.42
3DHGS 15.26 15.96 15.71 16.22 16.94
3DGS-MCMC 28.61 29.02 29.39 29.45 29.76
SSS 28.58 29.10 29.40 29.40 29.91

Table 10. PSNR results of varying component numbers exper-
iments for every scene in Tanks&Temples and Deep Blending
dataset.

For backward propagation with training, we derive the rel-
evant partial derivatives with respect to Student’s t distribu-
tion, which is given in Sec. 4.2. Theoretically, the value of
ν of Student’s t distribution can be infinite, but in practice,
to avoid numerical issues, we limit the range of ν from 1 to
10000.

There are two major differences between using Student’s
t distribution and Gaussian distribution. The first is that a
t-distribution is not a t-distribution anymore after convolu-
tion with another t-distribution. So, we did not add a low-
pass filter like in vanilla 3DGS (adding 0.3 to the diago-

Scene - Components Tanks&Temples - average
Method δ 1.4δ 1.8δ 2.2δ 2.6δ
3DGS 0.528 0.537 0.543 0.566 0.580
GES 0.589 0.623 0.642 0.668 0.680
3DHGS 0.504 0.511 0.518 0.526 0.533
3DGS-MCMC 0.826 0.836 0.842 0.848 0.851
SSS 0.827 0.839 0.846 0.852 0.856
Scene - Components Tanks&Temples - train
Method 182k 252k 324k 396k 468k
3DGS 0.506 0.521 0.523 0.561 0.584
GES 0.645 0.699 0.727 0.774 0.788
3DHGS 0.473 0.479 0.485 0.494 0.505
3DGS-MCMC 0.798 0.807 0.814 0.820 0.824
SSS 0.799 0.812 0.821 0.828 0.833
Scene - Components Tanks&Temples - truck
Method 136k 196k 252k 308k 364k
3DGS 0.549 0.554 0.563 0.571 0.576
GES 0.532 0.548 0.557 0.562 0.572
3DHGS 0.535 0.543 0.550 0.557 0.561
3DGS-MCMC 0.855 0.865 0.871 0.876 0.879
SSS 0.854 0.865 0.872 0.877 0.880
Scene - Components Deep Blending - average
Method δ 1.4δ 1.8δ 2.2δ 2.6δ
3DGS 0.702 0.706 0.711 0.715 0.726
GES 0.704 0.707 0.717 0.732 0.732
3DHGS 0.704 0.713 0.710 0.737 0.737
3DGS-MCMC 0.881 0.887 0.890 0.893 0.895
SSS 0.881 0.887 0.891 0.893 0.897
Scene - Components Deep Blending - drjohnson
Method 80k 112k 144k 176k 208k
3DGS 0.698 0.701 0.707 0.707 0.717
GES 0.696 0.705 0.715 0.721 0.735
3DHGS 0.706 0.711 0.711 0.752 0.744
3DGS-MCMC 0.880 0.885 0.888 0.890 0.891
SSS 0.880 0.885 0.890 0.894 0.896
Scene - Components Deep Blending - playroom
Method 37k 51.8k 66.6k 81.4k 96.2k
3DGS 0.706 0.711 0.714 0.723 0.735
GES 0.713 0.709 0.719 0.742 0.730
3DHGS 0.701 0.714 0.709 0.722 0.731
3DGS-MCMC 0.883 0.890 0.893 0.896 0.899
SSS 0.882 0.888 0.892 0.891 0.897

Table 11. SSIM results of varying component numbers exper-
iments for every scene in Tanks&Temples and Deep Blending
dataset.

nal values of the projected covariance matrix) in our final
model. However, we do add the low-pass filter as a prac-
tical solution in SGD + positive t-distribution (replacing
Gaussian with Student’s t but without negative components
and SGHMC) in the Ablation Study for fair comparison
with similar component numbers. This will be discussed
in Sec. 3.2. Another difference is that Student’s t distribu-
tion does not have a general “empirical rule” as Gaussian
distribution. In vanilla 3DGS, they use the “empirical rule”
(also known as “68–95–99.7 rule” or “three-sigma rule”) to
truncate the projected Gaussian in 2D space. The “three-



Scene - Components Tanks&Temples - average
Method δ 1.4δ 1.8δ 2.2δ 2.6δ
3DGS 0.569 0.558 0.552 0.527 0.510
GES 0.500 0.460 0.441 0.410 0.397
3DHGS 0.590 0.582 0.574 0.566 0.558
3DGS-MCMC 0.231 0.214 0.203 0.195 0.187
SSS 0.229 0.210 0.195 0.185 0.177
Scene - Components Tanks&Temples - train
Method 182k 252k 324k 396k 468k
3DGS 0.564 0.548 0.543 0.504 0.476
GES 0.415 0.352 0.321 0.267 0.251
3DHGS 0.597 0.592 0.583 0.575 0.561
3DGS-MCMC 0.255 0.240 0.229 0.220 0.212
SSS 0.254 0.235 0.220 0.208 0.199
Scene - Components Tanks&Temples - truck
Method 136k 196k 252k 308k 364k
3DGS 0.575 0.569 0.560 0.551 0.545
GES 0.585 0.569 0.561 0.552 0.543
3DHGS 0.583 0.571 0.564 0.558 0.555
3DGS-MCMC 0.206 0.189 0.178 0.170 0.163
SSS 0.204 0.184 0.170 0.161 0.154
Scene - Components Deep Blending - average
Method δ 1.4δ 1.8δ 2.2δ 2.6δ
3DGS 0.525 0.522 0.515 0.510 0.500
GES 0.522 0.522 0.509 0.495 0.491
3DHGS 0.522 0.515 0.515 0.490 0.488
3DGS-MCMC 0.325 0.310 0.301 0.295 0.290
SSS 0.319 0.305 0.296 0.289 0.282
Scene - Components Deep Blending - drjohnson
Method 80k 112k 144k 176k 208k
3DGS 0.526 0.523 0.514 0.512 0.504
GES 0.529 0.522 0.508 0.503 0.487
3DHGS 0.515 0.515 0.511 0.476 0.482
3DGS-MCMC 0.316 0.290 0.290 0.284 0.280
SSS 0.310 0.297 0.288 0.280 0.275
Scene - Components Deep Blending - playroom
Method 37k 51.8k 66.6k 81.4k 96.2k
3DGS 0.524 0.521 0.515 0.508 0.496
GES 0.516 0.522 0.509 0.488 0.494
3DHGS 0.530 0.515 0.519 0.505 0.494
3DGS-MCMC 0.333 0.320 0.312 0.306 0.301
SSS 0.329 0.314 0.304 0.298 0.289

Table 12. LPIPS results of varying component numbers exper-
iments for every scene in Tanks&Temples and Deep Blending
dataset.

sigma rule” can be applied to t-distributions with thin tails
(high ν degree). Besides, we obtain different critical values
of different ν degrees [5] and interpolate these to obtain ap-
propriate truncated values for fat-tailed t-distributions with
lower ν values.

Our training process does not use the adaptive density
control in vanilla 3DGS. Instead, we recycle components
with low opacity to high opacity components every n iter-
ations. This is done by creating a Multinomial distribution
of opacity values and sampling all components that have
relatively high probability. Recycle can only be achieved

Ablation Setup — Metric PSNR ↑ SSIM↑ LPIPS↓
Mip-NeRF 22.22 0.759 0.257
3DGS 23.14 0.841 0.183
GES 23.35 0.836 0.198
SGD + positive t-dis 23.80 0.838 0.191
SGHMC + positive t-dis 24.53 0.864 0.155
Full model 24.87 0.873 0.138

Table 13. Ablation Study on Tanks&Temples with the same
component numbers as in baselines. More details are in the
SM.

Method \ Scene bicycle bonsai counter garden kitchen room stump average
SGD + positive t-dis 25.52 31.80 28.82 27.60 30.93 31.60 26.72 29.00
SGHMC + positive t-dis 25.97 32.87 29.49 27.92 31.92 32.04 27.44 29.66
Full SSS model 25.68 33.50 29.87 28.09 32.43 32.57 27.17 29.90

Table 14. PSNR results of ablation study for every scene in
Mip-NeRF 360 dataset.

Method \ Scene bicycle bonsai counter garden kitchen room stump average
SGD + positive t-dis 0.767 0.941 0.909 0.866 0.927 0.923 0.771 0.872
SGHMC + positive t-dis 0.801 0.952 0.920 0.879 0.936 0.933 0.817 0.891
Full SSS model 0.798 0.956 0.926 0.882 0.939 0.938 0.813 0.893

Table 15. SSIM results of ablation study for every scene in
Mip-NeRF 360 dataset.

Method \ Scene bicycle bonsai counter garden kitchen room stump average
SGD + positive t-dis 0.225 0.185 0.188 0.110 0.121 0.199 0.234 0.180
SGHMC + positive t-dis 0.182 0.159 0.168 0.099 0.112 0.181 0.183 0.155
Full SSS model 0.173 0.151 0.156 0.009 0.104 0.167 0.174 0.145

Table 16. LPIPS results of ablation study for every scene in
Mip-NeRF 360 dataset.

Dataset - Scene Tanks&Temples Deep Blending
Method train truck average drjohnson playroom average
SGD + positive t-dis 22.18 25.42 23.80 29.22 29.93 29.57
SGHMC + positive t-dis 22.92 26.15 24.53 29.45 30.04 29.75
Full SSS model 23.32 26.41 24.87 29.66 30.47 30.07

Table 17. PSNR results of ablation study for every scene in
Tanks&Temples and Deep Blending dataset.

Dataset - Scene Tanks&Temples Deep Blending
Method train truck average drjohnson playroom average
SGD + positive t-dis 0.803 0.874 0.838 0.900 0.901 0.901
SGHMC + positive t-dis 0.838 0.891 0.864 0.902 0.905 0.903
Full SSS model 0.850 0.897 0.873 0.905 0.909 0.907

Table 18. SSIM results of ablation study for every scene in
Tanks&Temples and Deep Blending dataset.

Dataset - Scene Tanks&Temples Deep Blending
Method train truck average drjohnson playroom average
SGD + positive t-dis 0.226 0.156 0.191 0.248 0.247 0.247
SGHMC + positive t-dis 0.186 0.124 0.155 0.262 0.257 0.260
Full SSS model 0.166 0.109 0.138 0.249 0.245 0.247

Table 19. LPIPS results of ablation study for every scene in
Tanks&Temples and Deep Blending dataset.

if certain conditions are met, i.e. the change to the current
state (rendering result) after the recycle is minimal [8, 12].



Dataset Tanks&Temples Deep Blending
Method—Metric PSNR ↑ SSIM↑ LPIPS↓ PSNR ↑ SSIM↑ LPIPS↓
3DGS 23.14 0.841 0.183 29.41 0.903 0.243
SGD + positive t-dis 23.80 0.838 0.191 29.57 0.901 0.247
SGHMC + 3DGS 24.52 0.869 0.150 29.56 0.906 0.239
SGHMC + positive t-dis 24.53 0.864 0.155 29.75 0.903 0.259
Full model 24.87 0.873 0.138 30.07 0.907 0.247

Table 20. More Ablation Study.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending
Method—Metric FPS Training time FPS Training time FPS Training time
3DGS 99 21min 120 12min 119 21min
3DGS-MCMC 79 32min 105 17min 138 29min
SSS 71 45min 87 33min 100 21min

Table 21. Training time and rendering efficiency.

We give detailed formulae of recycling in Sec. 5. The re-
sult of calculating the new covariance matrix after recy-
cling includes the β() function. Because CUDA native
implementation does not include the support for the β()
function, we decompose the β() function into Γ() func-
tion for computation. Further, to prevent excessive val-
ues by the Γ() function with a large input number, we fur-
ther use the ln(Γ()) function in practice. These are shown
with Eqs. (34) and (35).

Finally, we employ the Adam gradient in SGHMC. The
hyperparameters in our training process are largely the
same as those of the original 3DGS and 3DGS-MCMC
(e.g. we down-scale images to the same resolution for
large scenes in the Mip-NeRF360 dataset as most works
did), but because we use Student’s t, negative components,
and SGHMC, there are some new parameters. Detailed
parameter values can be found in our code. The code
is available at https://github.com/realcrane/3D-student-
splating-and-scooping.

All our experiments are running with one NVIDIA RTX
4090 GPU. We show training/rendering time in Tab. 21.
SSS is slower compared to vanilla 3DGS but still achieves
real-time rendering (>70fps).

3.1. Adaptation of Baselines
To illustrate the parameter efficiency of our model, we did
experiments with fewer components amount all baselines
and our model. Because other baselines except 3DGS-
MCMC do not support setting the maximum number of
components, we modified their code. These modifications
are minimal and do not involve any adjustment of hyperpa-
rameters to ensure a fair comparison. Specifically, we mod-
ified the adaptive density control used by most baselines.
We stop densification (cloning and splitting) if the current
number of components has reached the maximum setting.
Note that due to the existence of the pruning strategy, the
number of components can also be decreased, which will
allow densification to continue until the preset densification
iteration is reached.

3.2. Ablation Study Implementation

We show our Ablation study results in Sec. 1.3. These in-
clude three settings with one or more components in SSS
to evaluate their effectiveness. Setting 1 (SGD + posi-
tive t-dis) uses adaptive density control and SGD optimiza-
tion in vanilla 3DGS with positive Student’s t distribution.
Setting 2 (SGHMC + positive t-dis) uses SGHMC only
with positive Student’s t distribution. Setting 3 (full SSS
model) uses SGHMC with both positive and negative Stu-
dent’s t distribution. Since Student’s t distribution does not
have an analytical form after convolution with another Stu-
dent’s t, we remove the low-pass filter in the splatting al-
gorithm [17, 18]. The main function of the low-pass filter
is to ensure that the minimum scale of each component is
close to 1 pixel. Removing the low-pass filter does not af-
fect our final result, because our principled sampler can en-
sure that the final components are of the appropriate size.
However, for setting 1, the absence of a low-pass filter will
lead to an increase in the number of components (consid-
ering that it will use more tiny components to reconstruct
more details). In order to ensure the fairness of the com-
parison (to make our number of components roughly equal
to that of vanilla 3DGS), we added a small value (0.3) to
the covariance matrix of the t-distribution after projection
as a low-pass filter from an engineering perspective. Fur-
thermore, we do not present the results of using adaptive
density control and SGD optimization in vanilla 3DGS with
both positive and negative t-distributions. This is because
our negative components are designed to be used with our
principled sampler. The densification of positive compo-
nents in vanilla 3DGS is based on the size of the compo-
nents and their gradients, which is not applicable to nega-
tive components. Adding negative components directly to
adaptive density control will lead to worse results and is not
the focus of our study. Finally, we also test our SGHMC
sampler with Gaussian distributions to show its advantage.
We use the same hyperparameters related to SGHMC and
keep all other hyperparameters the same as vanilla 3DGS in
this experiment.

4. Forward and Backward Passes

Although the general forward/backward passes of SSS are
similar to 3DGS, the equations are different. This is mainly
due to the introduction of t-distribution. Below we give de-
tails of mathematical derivation.

https://github.com/realcrane/3D-student-splating-and-scooping
https://github.com/realcrane/3D-student-splating-and-scooping


4.1. Forward Pass
Affine transformation of 3D Student’s t distribution A
3D Student’s t distribution is:

T (x;µ,Σ, ν) =
Γ(ν+3

2 )

(νπ)
3
2Γ(ν2 )|Σ|

1
2

· [1 + 1

ν
(x− µ)TΣ−1(x− µ)]−

ν+3
2 (1)

where ν ≥ 1, x, µ ∈ R3 Σ ∈ R3×3 are the control param-
eter, the mean and the covariance matrix, which describes
the spread and orientation of the distribution in 3D space.
To render an image, Eq. (1) needs to be projected into a 2D
image plane, which goes through a view transformation W ,
d, and a (approximate) projective transformation J [17, 18],
so a 3D point x after transformation becomes u:

u = m−1(x) = A−1(x− b)

where A = JW and b = x+ J(d− t) (2)

where t is the camera coordinates. Applying the transfor-
mations Eq. (2) to Eq. (1) gives:

T (x) =
Γ(ν+3
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3
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2
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(3)

So for r(x) = T (x;µ,Σ, ν) at x, its transformed density
is:

r
′

k(x) =
1

|A−1|
T (x;m(µ), AΣAT , ν)

=
1

|W−1J−1
k |

T (x;m(µ), JWΣWTJT , ν)

=
1

|W−1J−1|
T (x;m(µ),Σ

′
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(4)

where Σ
′
= JWΣWTJT .

This result still holds after we drop the normalization

constant Γ( ν+3
2 )

(νπ)
3
2 Γ( ν

2 )|Σ|
1
2

.

Integral along a ray (marginalization) After deriving
the view and projective transformation for Student’s t dis-
tribution, we need to integrate it along the ray that inter-
sects with it for rendering. i.e. splatting it. This is actually
the marginalization of Student’s t distribution along one di-
mension, and it can be done by another affine transforma-

tion y = Wx, where W =

[
I, 0
0, 0

]
with I is a 2× 2 identify

matrix. To see this, imagine x can be divided into two parts

x =

[
x1

x2

]
, so that:

T (Wx;µ,Σ, ν, p) = T (y;Wµ,WΣWT , ν, p) (5)

and if µ =

[
µa

µb

]
and Σ =

[
Σaa Σab

Σba Σbb

]
then

T (x;µ,Σ, ν, p) = T (

(
xa

xb

)
;

(
µa

µb

)
,

(
Σaa Σab

Σba Σbb

)
, ν, p)

(6)

where means by transforming x with W =

[
I, 0
0, 0

]
, we will

get the marginal distribution of xa:

T (Wx;µ,Σ, ν, p) = T (y;Wµ,WΣWT , ν, p)

= T (xa;µa,Σaa, ν, pa)
(7)

This way we can marginalize any variable for T . Integration
along a ray gives a 2D t-distribution:

T2D(x, µ,Σ, ν) = [1 +
1

ν
(x− µ)TΣ−1(x− µ)]−

ν+2
2 (8)

where x now is in 2D space.
So far, we have derived all key equations for the forward

pass when using t-distributions as the mixture components.

4.2. Backward Pass
The most important computation in the backward pass is to
compute all the key gradients, ∂L

∂µ , ∂L
∂S , ∂L∂R , ∂L

∂c , ∂L
∂o , and



∂L
∂ν , where L is the loss, µ is the mean of a t-distribution.
S and R are the scaling and rotation matrices for the co-
variance matrix of t-distribution. c is the color represented
in spherical harmonics. o is the opacity. ν is the control
parameter of the t-distribution.

L is calculated between the ground-truth pixel colors and
rendered colors. The rendered pixel colors are:

c(x) =

N∑
i=1

cioiT
2D
i (x)

i−1∏
j=1

(1− ojT
2D
j (x)) (9)

where x is the position of a pixel in 2D images.
For simplicity, we let α = oT . Based on the chain rule:

∂L
∂µ

=
∂L
∂rgb

· ∂rgb
∂α

· ∂α
∂T 2D

· ∂T 2D

∂h
· ∂h
∂µ′

· ∂µ
′

∂µ
(10)

∂Loss

∂o
=

∂Loss

∂rgb
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∂α

· ∂α
∂o

(11)

∂L
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=
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(12)
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· ∂α
∂T 2D
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(13)

∂L
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∂α
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· ∂T 2D

∂h
· ∂h
∂Σ′
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′

∂Σ
· ∂Σ
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(14)

∂L
∂ν

=
∂L
∂rgb

· ∂rgb
∂α

· ∂α
∂T 2D

· ∂T 2D

∂ν
(15)

where µ′ and Σ′ are the projected µ and Σ in 2D space. h
is a predefined function explained shortly.

For these gradients, we only need to replace the calcu-
lation of Gaussian in vanilla 3DGS with the calculation of
Student’s t distribution based on the chain rule, except for
the gradient for ν in Eq. (15). In order to further simplify
the calculation, we extract the same part of the 2D Gaussian
and 2D Student’s t distributions, and define a function h(x):

G2D(x, µ′,Σ′) = exp−
1
2h(x)

T 2D(x, µ′,Σ′, ν) = [1 +
1

ν
h(x)]−

ν+2
2

(16)

where
h(x) = (x− µ′)TΣ′−1(x− µ′) (17)

We have

∂T 2D(x, µ′,Σ′, ν)
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2 dh(x)
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(18)

to replace every

∂G2D(x, µ′,Σ′)

∂h(x)
= −1

2
exp−

1
2h(x) dh(x) (19)

Then we can use the derived calculations in 3DGS for
the rest of the parts, we refer the readers to read [15] for
more detailed mathematics if interested.

Finally, the gradient for optimizing ν needs to be calcu-
lated separately. Assuming g(ν) = 1 + 1

νh(x), we have
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(20)

5. Component Recycling

The key equation for relocating low opacity components to
a high opacity component is to make sure the distribution
before and after the relocation is not changed [8, 12]. If we
move new components to the location of an old component
µnew = µold, this is ensured by separately handling the
opacity and the covariance matrix. For opacity, it is simply:

(1−Onew)
N = (1−Oold) (21)

For covariance:

minimize

∫ ∞

−∞
||Cnew(x)− Cold(x)||dx or

minimize||
∫ ∞

−∞
Cnew(x)−

∫ ∞

−∞
Cold(x)||dx

(22)

To solve Eq. (22), we first need to separately derive∫∞
−∞ Cold(x) and

∫∞
−∞ Cnew(x). For

∫∞
−∞ Cold(x), as-

suming u = x√
νoldΣold

, du = 1√
νoldΣold

dx, and dx =
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For the form

∫∞
−∞[1 + x2]−αdx, assuming x = tan(θ),

dx = sec2(θ)dθ, and 1 + x2 = 1 + tan2(θ) = sec2(θ),
then: ∫ ∞

−∞
[1 + x2]−αdx

= 2

∫ ∞

0

[1 + x2]−αdx

= 2

∫ π/2

0

(sec2(θ))−αsec2(θ)dθ

= 2

∫ π/2

0

(sec2−2α(θ))dθ

= 2

∫ π/2

0

(cos2α−2(θ))dθ

(24)

Further, according to the definition of the β function:

β(x, y) = 2

∫ π/2

0

sin2x−1(θ)cos2y−1(θ)dθ (25)

Eq. (24) becomes:

2

∫ π/2

0

(cos2α−2(θ))dθ

2

∫ π/2

0

sin2 1
2−1(θ)cos2(α−

1
2 )−1(θ)dθ

= β(
1

2
, (α− 1

2
))

(26)

Then Eq. (23) becomes:

oold
√

νoldΣold

∫ ∞

−∞
[1 + u2]−

νold+3

2 du

= oold
√
νoldΣold · β(

1

2
,
νold + 2

2
)

(27)

For
∫∞
−∞ Cnew(x),

∫ ∞

−∞
Cnew(x) =

∫ ∞

−∞

N∑
i=1

onew[1 +
1

νnew

x2

Σnew
]−

νnew+3
2

· (1− onew[1 +
1

νnew

x2

Σnew
]−

νnew+3
2 )i−1dx

(28)

From Binomial theorem:

(x+ y)n =

n∑
k=0

(
n
k

)
xn−kyk =

n∑
k=0

(
n
k

)
xkyn−k (29)

Eq. (28) becomes:

∫ ∞

−∞

N∑
i=1

onew[1 +
1

νnew

x2

Σnew
]−

νnew+3
2

· (1− onew[1 +
1

νnew

x2

Σnew
]−

νnew+3
2 )i−1dx

=

∫ ∞

−∞

N∑
i=1

onew[1 +
1

νnew

x2

Σnew
]−

νnew+3
2

·
i−1∑
k=0

(
i− 1
k

)
(−onew[1 +

1

νnew

x2

Σnew
]−

νnew+3
2 )kdx

=

∫ ∞

−∞

N∑
i=1

onew[1 +
1

νnew

x2

Σnew
]−

νnew+3
2

·
i−1∑
k=0

(
i− 1
k

)
(−1)k(onew)

k([1 +
1

νnew

x2

Σnew
]−

νnew+3
2 )kdx

=

∫ ∞

−∞

N∑
i=1

i−1∑
k=0

(
i− 1
k

)
(−1)k(onew)

k+1

· ([1 + 1

νnew

x2

Σnew
]−

(k+1)(νnew+3)
2 )dx

=

N∑
i=1

i−1∑
k=0

(
i− 1
k

)
(−1)k(onew)

k+1

·
∫ ∞

−∞
([1 +

1

νnew

x2

Σnew
]−

(k+1)(νnew+3)
2 )dx

(30)

According to equations 24, 25 and 26, Eq. (30) becomes:

N∑
i=1

i−1∑
k=0

(
i− 1
k

)
(−1)k(onew)

k+1

·
∫ ∞

−∞
([1 +

1

νnew

x2

Σnew
]−

(k+1)(νnew+3)
2 )dx

=

N∑
i=1

i−1∑
k=0

(
i− 1
k

)
(−1)k(onew)

k+1

·
√
νnewΣnew · β(1

2
,
(k + 1)(νnew + 3)− 1

2
)

(31)

Having derived
∫∞
−∞ Cold(x) and

∫∞
−∞ Cnew(x), we mini-



mize Eq. (22) by setting:∫ ∞

−∞
Cnew(x) =

∫ ∞

−∞
Cold(x)

⇒
N∑
i=1

i−1∑
k=0

(
i− 1
k

)
(−1)k(onew)

k+1

·
√
νnewΣnewβ(

1

2
,
(k + 1)(νnew + 3)− 1

2
)

= oold
√

νoldΣoldβ(
1

2
,
νold + 2

2
)

⇒
√
νnewΣnew

N∑
i=1

i−1∑
k=0

(
i− 1
k

)
(−1)k(onew)

k+1

· β(1
2
,
(k + 1)(νnew + 3)− 1

2
)

= oold
√
νoldΣoldβ(

1

2
,
νold + 2

2
)

⇒Σnew = (oold)
2 νold
νnew

(
β( 1

2 ,
νold+2

2 )∑N
i=1

∑i−1
k=0

i− 1
k

(−1)k(onew)k+1β( 1
2 ,

(k+1)(νnew+3)−1
2 )

)2

· Σold

(32)
So at the end, we can compute Σnew based on Σold:

Σnew = (oold)
2 νold
νnew

(
β( 1

2 ,
νold+2

2 )∑N
i=1

∑i−1
k=0

i− 1
k

(−1)k(onew)k+1β( 1
2 ,

(k+1)(νnew+3)−1
2 )

)2

· Σold

(33)
Furthermore, since β function can be represented by Γ func-
tions:

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(34)

We can use the Γ function or ln(Γ) function instead of β
function in practice:

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

⇒ ln(β(x, y)) = ln(Γ(x)) + ln(Γ(y))− ln(Γ(x+ y))

⇒ β(x, y) = exp(ln(Γ(x)) + ln(Γ(y))− ln(Γ(x+ y)))
(35)

6. SGHMC Sampling
In SGHMC [3], the posterior distribution of model param-
eters θ given a set of independent observations x ∈ D is
defined as

π(θ, r) ∝ exp(−U(θ)) (36)

where U(θ) is a potential energy function which is
−
∑

x∈D log p(x|θ)− log p(θ).
To sample from p(θ|D), The Hamiltonian (Hybrid)

Monte Carlo (HMC) considers generating samples from a
joint distribution of π(θ, r) defined by

π(θ, r) ∝ exp(−U(θ)− 1

2
rTMr) (37)

where the Hamiltonian function is defined by H(θ, r) =
U(θ) + 1

2r
TMr. M is the mass matrix and r is the auxil-

iary momentum variables. Further, to introduce stochastic
gradients into the sampling, the Stochastic Gradient Hamil-
tonian Monte Carlo (SGHMC) is proposed in [3] where an
additional friction is introduced. We refer the readers to [3]
for detailed mathematical derivation.

To employ SGHMC for our SSS sampling, we start by
parameterizing a joint distribution:

P (θ, r) ∝ exp(−Lθ(x)−
1

2
rT Ir) (38)

By defining a similar Hamiltonian function as in Eq. (37)
and adding a friction term as in [3], we derive

dθ =M−1rdt

dr =−∇U(θ)dt− CM−1rdt+N (0, 2Cdt) (39)

Next, we further modify the updating equations in
Eq. (39) to:

µt+1 = µt − ε2
[
∂L

∂µ

]
t

+ F +N

F = σ(o)ε(1− εC)rt−1

N = σ(o)N (0, 2ε
3
2C)

rt+1 = rt − ε

[
∂L

∂µ

]
t+1

− εCrt−1 +N (0, 2εC)

where σ(o) = σ(−k(o− t)) (40)

where ε is the learning rate and decays during learning. N
is Gaussian noise. o is the opacity. To further clarify the re-
lation between the learnable parameter and the momentum,
we first show the updating rule for the learnable parameter
in the original SGHMC:
µt+1 = µt + ε ∗ (rt − ε ∗Gt − ε ∗ C ∗ rt +N(0, 2 ∗ ε ∗ C))

= µt + ε ∗ rt − ε2 ∗Gt − ε2 ∗ C ∗ rt +N(0, 2 ∗ ε
3
2 ∗ C)

= µt − ε2 ∗Gt + ε ∗ (1− ε ∗ C) ∗ rt +N(0, 2 ∗ ε
3
2 ∗ C)

(41)

where G is the gradient
[
∂L
∂µ

]
.

Before Stochastic Gradient Hamiltonian Monte Carlo
(SGHMC), we first attempted the Stochastic Gradi-
ent Langevin Dynamics (SGLD) sampling in 3DGS-
MCMC [8]. Although it outperforms the standard optimiza-
tion employed in the original 3DGS and its variants, it still



sometimes generates suboptimal results. Other than the ran-
domness in the optimization itself, we suspected the core
reason is the increased model complexity, especially the in-
troduction of ν in t-distribution, which brings tight coupling
between many parameters, e.g. ν greatly influencing µ and
Σ. On the high level, the optimization of µ and Σ can be
seen as seeking the optimal distribution within a family of
distributions. In 3DGS, this family is Gaussians. However,
when ν is also optimized, the family itself changes during
optimization. This is the core reason we resort to SGHMC
which shows better sampling behaviors given tightly cou-
pled parameters [3].

Furthermore, we leave the learning of ν and other pa-
rameters to Adam, as this can help further decouple the pa-
rameters. This is a similar strategy to the 3DGS-MCMC.
This is complemented by using SGHMC on the location of
t-distribution µ. Also, for components with high opacity,
we tend to think that they are near their local optima, so no
further random perturbation is needed. This is achieved by
adding a sigmoid switch:

µt+1 = µt − ε
2 ∗ Gt + σ(ε ∗ (1 − ε ∗ C) ∗ rt) + σ(N(0, 2 ∗ ε

3
2 ∗ C))

(42)

σ is the customized sigmoid function. Note we add the sig-
moid switch to both the friction and the noise, partially to
keep the integrity of the sampler and partially to remove
the friction for nearly optimal components. Also, when the
friction and noise are removed, the parameter is updated by
ε2 ∗Gt, i.e. the gradient scaled by ε2 which is much smaller
than the learning rate ε, encouraging local search.

Finally, we conducted experiments between our
SGHMC and SGLD in 3DGS-MCMC. We found that
while SGLD can explore large spaces, SGHMC is better
at local exploitation. To achieve the best results, we
finally performed a burn-in stage with the friction removed
during training for large exploration. In order to maintain
the anisotropy of Σ of Student’s t distribution after the
friction is removed, we multiply the noise by Σ following
3DGS-MCMC. After the burn-in stage, we add the friction
back and restore the noise (no longer multiplied by Σ).

7. Representation Limitation

Although we demonstrate the strength of our approach in
both qualitative and quantitative evaluations, we do ac-
knowledge that our approach is not perfect in every sce-
nario. We have discussed the limitations of SSS in the main
context. For example, the Student’s t distribution is limited
by symmetric and smooth representation, which makes it
difficult to handle sharp shapes perfectly. Student’s t distri-
bution combined with negative components can increase the
representation ability, but the range of representation is still
limited. In addition, although the randomness of SGHMC
brings more exploration of space, it still sometimes suffer

from the floating artifact problem commonly observed in
3DGS.
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