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Appendices: Proofs of Theoretical Results
A.1 Proof of Theorem 1 (Frequency Separation)
Theorem 1 (Frequency Separation). For tasks i and j,
let Si and Sj be independently and uniformly sampled fre-
quency selection masks with k components each from a total
of d2 components. For k ≪ d, the probability of perfect
separation (no frequency collision) is at least:

p
(
supp(Si) ∩ supp(Sj) = ∅

)
≥ 1− k2

d2
.

Proof. We approach this proof using the probabilistic
method. Let Si and Sj be binary masks where exactly k
elements are set to 1 (representing the selected frequency
components) and the remaining elements are 0.

1) The probability of a collision (i.e., supp(Si) ∩
supp(Sj) ̸= ∅) can be analyzed using the complementary
counting principle. Let us consider the probability that there
is at least one frequency component that is selected by both
tasks.

2) First, we select k frequency components for task i uni-
formly at random from the d2 available components. Then,
we select k components for task j similarly. The probability
that a specific component in Sj collides with any component
in Si is k

d2 , since exactly k out of d2 components are selected
for Si.

3) Using the union bound, the probability of at least one
collision among the k components of Sj is bounded by:

p(collision) ≤ k · k
d2

=
k2

d2
.

4) Therefore, the probability of perfect separation (no
collision) is:

p(supp(Si)∩ supp(Sj) = ∅) = 1−P (collision) ≥ 1− k2

d2
.

Note that this bound is derived using the union bound,
which can be loose. The exact probability of “no collision”
can be computed using the hypergeometric distribution as:

p
(
supp(Si) ∩ supp(Sj) = ∅

)
=

(
d2−k

k

)(
d2

k

) .

However, for k ≪ d2, our bound 1− k2

d2 provides a good
approximation and conveys the key insight that the collision
probability scales quadratically with the ratio k

d2 .

A.2 Proof of Theorem 2 (Task Interference Bound)
Theorem 2 (Task Interference Bound). For tasks i and
j with updates ∆Wi and ∆Wj , with probability at least
1− δ:

∥∆WT
i ∆Wj∥F ≤ ε,

when the number of frequency components k satisfies:

k ≤ c
d2

T
log

(1
δ

)
,

where c is a universal constant and T is the total number of
tasks.

Proof. 1) We begin by expressing the weight updates in
the frequency domain using our bilinear formulation:

∆Wi = FBiF
H ,

∆Wj = FBjF
H ,

where Bi and Bj are sparse matrices with at most k non-zero
components each, and F is the DFT matrix.

2) The interference between tasks can be quantified by
the Frobenius norm of the product of their weight updates:

∥∆WT
i ∆Wj∥F = ∥(FBiF

H)T (FBjF
H)∥F .

3) Since F is unitary (FHF = I), we can simplify it:

∥∆WT
i ∆Wj∥F = ∥(FH)TBT

i F
TFBjF

H∥F = ∥F∗BT
i BjF

H∥F .

4) Using the unitary invariance of the Frobenius norm
(i.e., ∥UAV∥F = ∥A∥F for unitary matrices U and V), we
have:

∥∆WT
i ∆Wj∥F = ∥BT

i Bj∥F .

5) Now, the interference depends entirely on the over-
lap between the frequency components selected for each
task. When Bi and Bj have non-overlapping support (i.e.,
supp(Bi) ∩ supp(Bj) = ∅), we have BT

i Bj = 0, resulting
in zero interference.

6) From Theorem 1, the probability of perfect separation
between any two tasks is at least 1− k2

d2 . For T tasks, there
are

(
T
2

)
< T 2

2 pairs of tasks that could potentially interfere.
Using the union bound, the probability that at least one pair
of tasks has a collision is bounded by:

p(any collision) ≤
(
T

2

)
· k

2

d2
<

T 2

2
· k

2

d2
=

T 2k2

2d2
.

7) Setting this probability to be at most δ, we get:

T 2k2

2d2
≤ δ.



8) Solving for k, we get:

k ≤ d
√
2δ

T
.

9) For small δ, we can express this as:

k ≤ c
d2

T
log

(1
δ

)
,

where c is a constant that absorbs the factor
√
2 and the

approximation from the square root to the logarithm for
small δ.

10) When this condition is satisfied, with probability at
least 1 − δ, all pairs of tasks will have non-overlapping
frequency components, resulting in ∥BT

i Bj∥F = 0 for all
i ̸= j. Even in cases where there is some overlap, the
interference remains bounded by the magnitude of the com-
ponents and the extent of the overlap, which we can bound
by a small constant ε with high probability.

This proves that by appropriately setting the number of
frequency components k based on the total number of tasks
T and the desired confidence level 1− δ, one can ensure that
the interference between any pair of tasks remains below a
threshold ε with high probability.


